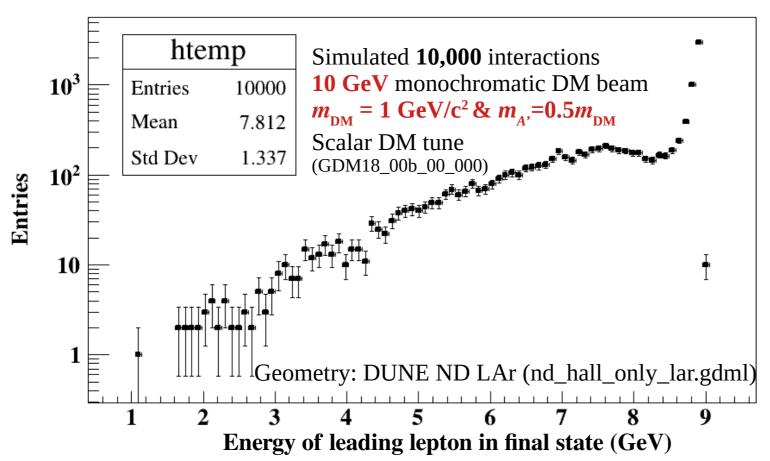


LDM Status Update

Wooyoung Jang

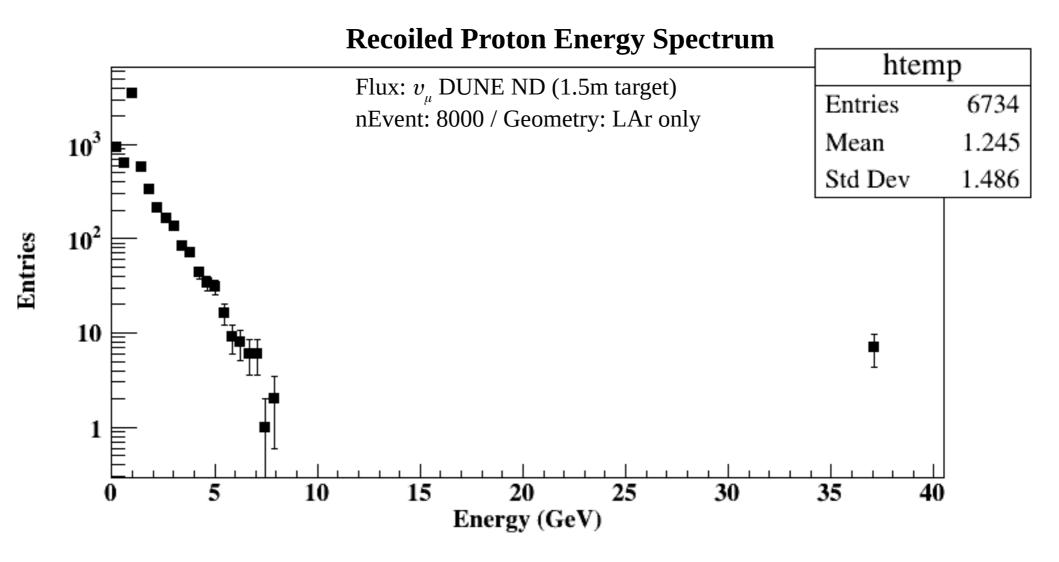

BSM Group Meeting

Department of Physics, University of Texas Arlington

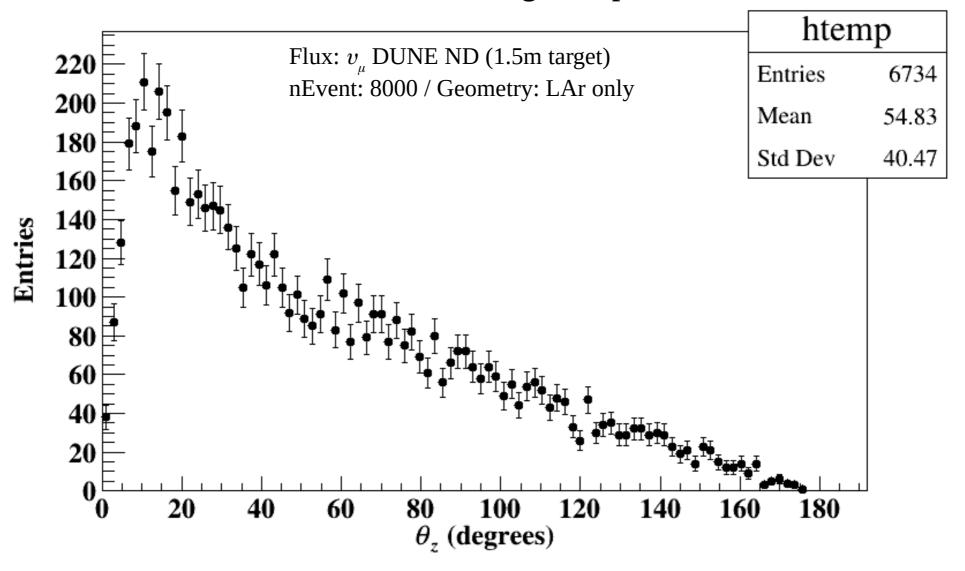
LDM – Signal Study

• I've done some practice runs to simulate DM and detector interaction. However, after some discussion about this, we found that this has some problem.

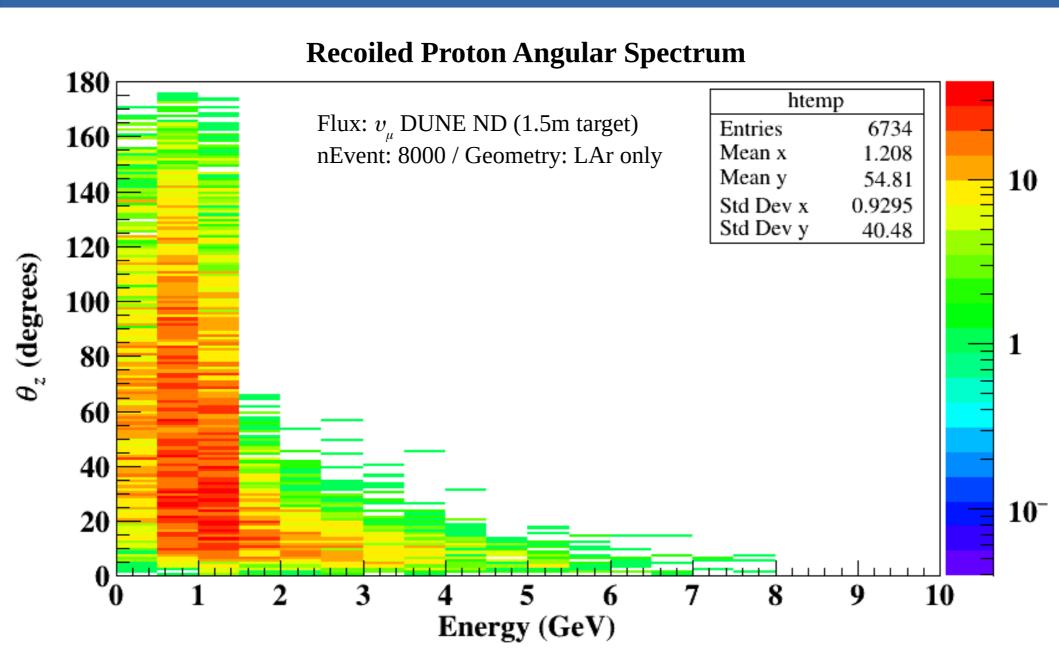
It is supposed to be look like a **decreasing pattern** according to the shape of DM-e scattering cross section.


In some sense, it looks like a spectrum of **recoiled DM spectrum**, not the electron spectrum.

→ problem in my analysis script?


gevdump

```
GENIE GHEP Event Record [print level: 3]
                           PDG | Mother | Daughter | Px | Py | Pz |
              Name | Ist |
            chi_dm | 0 | 2000010000 | -1 | -1 | 4 | 4 | 0.000 | 0.000 | 9.950 | 10.000 | 1.000
            Ar40 | 0 | 1000180400 | -1 | -1 | 2 | 3 | 0.000 | 0.000 |
                                                                            0.000 | 37.216 | 37.216
   1 |
             e- | 0 | 11 | 1 | -1 | 5 | 5 | 0.000 | 0.000 |
                                                                            0.000 | 0.001 | 0.001
   2 I
   3 I
             Ar40 | 1 | 1000180400 | 1 | -1 | -1 | -1 | 0.000 | 0.000 |
                                                                            0.000 | 37.216 | 37.216 |
   4 |
            chi_dm | 1 | 2000010000 | 0 | -1 | -1 | -1 |
                                                         0.003 | 0.004 |
                                                                            9.893 | 9.943 | 1.000 | P = (0.000,0.000,1.000)
   5 J
             e- | 1 | 11 | 2 | -1 | -1 | 8-1 | -0.003 | 0-0.004 |
                                                                            0.057 | 0.057 | 0.001
      Fin-Init:
                                                        0.000 | 0.000 | 0.000 | 0.000 |
                    chi_dm @ (x = 0.00000 m, y = 0.00000 m, z = 0.00000 m, t = 0.000000e+00 s)
 Err flag [bits:15->0] : 00000000000000000
                                       | 1st set:
 Err mask [bits:15->0] : 11111111111111 | Is unphysical: NO | Accepted: YES
 sig(Ev) = 4.65303e-35 cm^2 | dsig(y;E)/dy = 4.02590e-33 cm^2
                                                                        | Weight = 1.00000
GENIE Interaction Summary
[-] [Init-State]
 |--> probe : PDG-code = 2000010000 (chi_dm)
|--> nucl. target : Z = 18, A = 40, PDG-Code = 1000180400 (Ar40)
|--> hit nucleon : no set
 |--> hit quark : no set
 |--> probe 4P : (E = 10.000000, Px = 0.000000, Py =
                                                          0.000000, Pz = 9.949874)
 |--> target 4P : (E = 37.215526, Px = 0.000000, Py =
                                                          0.000000, Pz = 0.000000)
[-] [Process-Info]
|--> Interaction : DarkMatter
|--> Scattering : DME
[-] [Kinematics]
|--> *Selected* Inelasticity y = 0.994310
[-] [Exclusive Process Info]
|--> charm prod. : false |--> strange prod. : false
|--> f/s nucleons : N(p) = 0 N(n) = 0
|--> f/s pions : N(pi^0) = 0 N(pi^+) = 0 N(pi^-) = 0
 |--> f/s Other : N(gamma) = 0 N(Rho^0) = 0 N(Rho^+) = 0 N(Rho^-) = 0
 |--> resonance : [not set]
```


- I think I can start a validation study for background simulation.
- To me, the results from practice runs seem natural.
 - nEvent : 8,000 / Flux: v_{μ} DUNE ND (1.5m target) / Geometry: nd_hall_only_lar.gdml

Recoiled Proton Angular Spectrum

6

Summary

Signal study

- I think the <u>GENIE software setup</u> with the <u>dark matter module</u> is almost done.
- But there are some problems related to my analysis skill and this is needed to be improved. I'd like to investigate this further by discussing it with other colleagues.

Background study

- The practice run result seems reasonable.
- However, before we move on to G4 edep-sim study for detector simulation, I would like to check the current result to make sure that the reliability of the simulation.
- I'm thinking about the strategy for this validation study, but I also would like to listen to your comment or guide for this validation study.

8