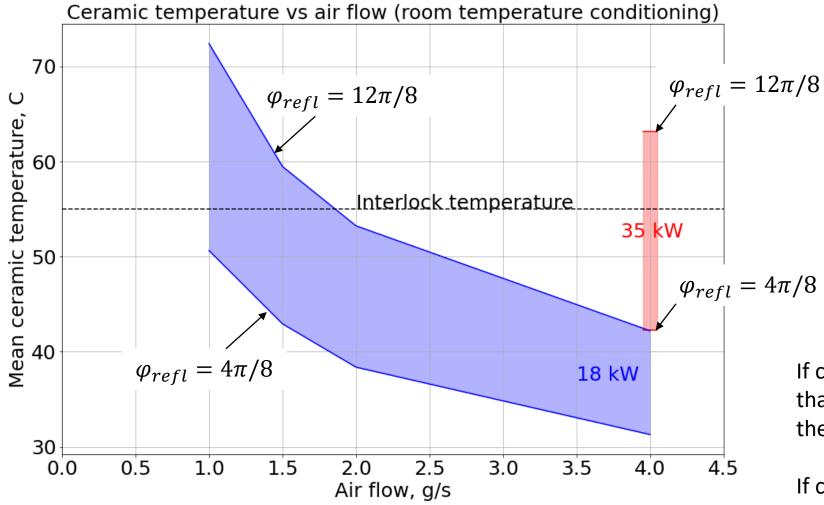

Assumptions

Part	Convection coefficient
Inside inner conductor - air side	$h_1[Wm^{-2}K^{-1}] = 11.6 \times \dot{m}[g/s]$
Inside inner conductor - vacuum side	$h_2[Wm^{-2}K^{-1}] = 72 + 85.4 \times \dot{m}[g/s]$
Inside inner sleeve	$h_3[Wm^{-2}K^{-1}] = 20 \times \dot{m}[g/s]$
Between inner and outer conductors - air side	$h_4 = 3 \ W m^{-2} K^{-1}$
Outside air	$h_5 = 5 \ W m^{-2} K^{-1}$


Reflection	Ceramic	Support	Inner	Inner	Outer	Outer	Doorknob	Total
phase	window	[W]	cond.	cond.	cond.	cond.	[W]	[W]
	[W]		air side	vacuum	air side	vacuum		
			[W]	side [W]	[W]	side [W]		
$4\pi/8$	2.9	3.0	42.6	33.9	10.0	5.5	17.5	115.4
$12\pi/8$	9.2	0.5	58.2	74.4	11.8	11.6	61.9	227.6

$T_1^{in} = 293 \ K,$
$T_i^{out} = T_i^{in} + \frac{P_i^{abs}}{C_p \dot{m}}, \ i = 14,$
$T_i^{conv} = (T_i^{in} + T_i^{out})/2,$

Table 5: RF losses in the coupler for $P_{in} = 35kW$, full reflection.

For 18 kW, all the losses are proportional with input power

Results

If conditioned at 35 kW, flow rate higher than 4 g/s might be needed to stay below the threshold.

If conditioned at 18 kW, the interlock temperature can be easily reached by decreasing the air flow to 1 - 1.5 g/s.