Fermilab **ENERGY** Office of Science

Computing for the Muon Program at Fermilab

Tammy Walton Muon Research Briefing December 16, 2020

Muon Programs

Computing

Analysis by James Mott

Physics Rev. XYZ 202? Nobel Physics Discovery

Mu2e is aiming to reduce the branching ratio by a factor of 10,000, which requires 3 years of running

The current and near future muon precision measurements requires large amount of data on petabyte scales at a continuous and steady rate for many months. Project and Design by Karie Badgley

р <u>д-2</u>

Muon g-2 requires about 20 X BNL data to reduce the statistical error by factor of 4

Fermilab computing leadership and supported resources are essential in overseeing the conversion of large data collection into physics results.

Fermilab Supported Resources : Computing Ecosystem

FermiGrid

Access to Open Science Grid and High-Performance Computing Centers

Data Management, Submission and Monitoring Tools

File Transfer

Service

Database Interface

job submission

rmanent Storage

File Library

Distributed Computing

DAQ

Experiment Supported Computing Tools

Data Production

Data Monitoring

Data Quality

Software Framework and Infrastructure

Simulation and Geometry

Calibration Algorithms

Reconstruction Algorithms

Experiment Supported Computing Tools

Data Production

Data Monitoring

Data Quality

Software Framework and Infrastructure

Simulation and Geometry

Calibration Algorithms

Reconstruction Algorithms

Computing for the Muon I

adriuti alexkesh alorent aluca angelazz binaccoy bil carey cotrozzi difalco dikali dominika dehemyak ebarlas edmonds ekargian ella evaletov fanghan fegray fenberg ghesketh glukicov gm2pro gorninge binney jessi12 jenempste jmott jprice jstaplet khong khaw klabe labounty larsb liangli iketon i welty iyon meghna mgalati mosot ph/222 mforem onkim pgirotti pypatel fatemi rhong ritwikac mocanth meimann sbfoster scharity schlesr2 scorrodi sganguly sgrant sweetmor sweigart barrett twalton zohu zichu zichu ota Total Claime Stots on GPGnd

Fermilab Supported Resources : Computing Ecosystem

FermiGrid

Access to Open Science Grid and High-Performance Computing Centers

Data Management, Submission and Monitoring Tools

Interactive Computing Machines

Distribution and Build Systems

Source Code Version Control Systems and Repositories

Online and Offline Software Frameworks

Interactive Analysis Tools

Experiment Supported Computing Tools

Data Production

Data Monitoring

Data Quality

Software Framework and Infrastructure

Simulation and Geometry

Calibration Algorithms

Reconstruction Algorithms

6

Needed for a successful physics program!

From Mayly Sanchez, Snowmass 2013

General Overview

Mu2e General Overview : Project Phase

ž

• Work plan

- Preparing computing needs for pre-operations (2022) and operations (2024)
- Defining the tasks, roles, and milestones
- Identifying and training people
- Developing software and physics analyses to coincide with data taking timeline
- Using subsystem prototypes to improve the software

• Status snapshot

- Mature simulations
 - Preparing to produce a large simulated dataset (2020 or early 2021)
 - Can run multi-threaded Geant4 simulation at HPC centers
- Optimizing the current trigger and reconstruction algorithms
- Preliminary design of data quality monitoring tools
- Software code, build, release, and distribution systems are in placed

g-2 General Overview : Operations and Analysis Phases

• Run-1

- 100% of data are processed
- Implemented many of Fermilab supported resources
- Robust software infrastructure and workflow
- Mature simulations, reconstruction, and analysis codes
- Running simulations at HPC center

• Run-2/3

- 100% of Run2 data are processed
- Using Fermilab supported Database for constants management
- Investing in computing offline production shifts and training
- Upgrading the offline data production workflow
- Improving and optimizing simulation, reconstruction and analysis codes

Fermilab Scientific and Computing Staff

Ray Culbertson (Senior Scientist)

Mu2e Computing and Software Algorithm Developer and Co-Leader Mu2e Software Workflow Developer

Jessica Esquivel (Research Associate)

g-2 Kicker Magnet Data Quality Manager g-2 Kicker Magnet and Electrostatic Quadrupoles Simulation Developer

Lisa Goodenough (Applications Physicist)

Software Upgrader g-2 Software Release Co-manager

Rob Kutschke (Senior Scientist)

Mu2e Computing and Software Co-Leader Operations Mu2e L2 for Data Processing and Computing

Alessandra Luca (Research Associate)

g-2 Tracking Software Comanager g-2 Tracking Algorithm Developer

Adam Lyon (Senior Scientist)

Scientific Computing Division Liaison Organized the g-2 Computing Ecosystem g-2 Simulation Developer and Leader Database Algorithm Developer g-2 Software Infrastructure Developer

James Stapleton (Research Associate)

g-2 Software Release Comanager Muon Spin Precession Algorithm Developer

Leah Welty-Rieger (Technical Aide)

g-2 Data Production Manager g-2 Simulation Developer Website Designer

Names	Title	Contribution	
Saskia Charity	Research Associate	Field Production Manager Field Software and Algorithm Developer	
Eric Flumerfelt	Computational Physics Developer	Data Acquisition Software Developer and Leader	
Andrei Gaponenko	Scientist	Offline Software and Infrastructure Developer	
Krzysztof Genser	Computational Physics Developer	Head of the Geant4 Support	
Iris Johnson	Electrical Engineer Student	Firmware and Software Algorithm Developer	
Manolis Kargiantoulakis	Research Associate	Muon Spin Precession Simulation Developer Quadrupole Algorithm Developer Machine Learning Group Leader	
Kyle Knoepfel	Application Developer and System Analyst	Head of the Experiments Software Framework (art)	
James Mott	Wilson Fellow	Former Tracking Software Co-manager Tracking Algorithm Developer Data Monitoring Algorithm Developer	
Pasha Murat	Senior Scientist	Simulation Co-Leader	
Ron Rechenmacher	Electrical Engineer	Data Acquisition Software Developer	
Ryan Rivera	Electrical Engineer	L2 Manager for Data Acquisition System Data Acquisition Software Developer and Designer	

‡ Fermilab

Tammy Walton (Associate Scientist)

Joined Muon g-2 as a Fermilab Research Associate in 2014 Developed the tracking software infrastructure and algorithms Integrated and maintained the software code Developed simulation and geometric tools Prepared the data production tools and workflow for pre-operations Implemented tools for accessing the database

Serving as co-coordinator for the offline team

Promoted to an Associate Scientist (Aug. 2020) in the Scientific Computing Division

Muon g-2 Computing

- Run 1
 - Most of the offline team consists of graduate students and postdocs, where many people served multiple roles
- 8 Muon g-2 (FNAL) 4 Run-2 Run-2 Run-2 Run-2 Run-3 Run-3 Run-3
- The data were produced using various operation configurations
- Many subsystems were used to determine the data quality
- The calorimeter detectors required serval types of calibration constants
- Managing all the various conditions, resulted in multiple processing of the data
- The processing iterations for the offline data caused the physics analyses to be delayed

Raw e ⁺ / cumulative (x BNL)

Serving (around October 2019) as co-coordinator for the offline team for Run 2 and beyond

MU2e

‡ Fermilab

- Runs 2 and 3
 - A robust system was developed to prevent similar production challenges
 - The raw data size for Run 2 and 3 are about 3 x larger than Run 1

Applications to the raw data:

Apply calibration and alignment constants

Reconstruct the calorimeter and tracker data

Verify the integrity and quality of the data using subsystems such as the electrostatic quadrupoles, kicker magnets, TO counter, the site location of the data, and much more

Rolling Production Workflow

Stage 1	Subset A	Subset B	Subset C	Subset D	
Stage 2		Subset A	Subset B	Subset C	
Stage 3			Subset A	Subset B	
Stage 4				Subset A	
	time →			L. Gik	bons

RECAP

Run – 1

- Most of the offline team consists of graduate students and postdocs, where many people served multiple roles
- The data were produced using various operation configurations
- Many subsystems were used to determine the data quality
- The calorimeter detectors required serval types of calibration constants
- Managing all the various conditions, resulted in multiple processing of the data
- The processing iterations for the offline data caused the physics analyses to be delayed

• Managing constants for Run 1

- Used a file system for managing the many systems calibration and data quality constants
- Created errors

• Managing constants for Run 1

- Used a file system for managing the many systems calibration and data quality constants
- Created errors
- Solution for Run 2 and beyond
 - Decided to use Fermilab supported constants database for managing constants
 - Implemented the workflow

Perform the minimal reconstruction to extract files needed for constant analyses.

Calibration constants analysis and Database stage

Calibration constants analysis and Database stage

Does not require experts!

29 12/16/20 Computing for the Muon Program

				Subset D	
ge 2	, e an e and e an e es 18 an e an e an e e 19 an e an e e an e e	Subset A	Subset B	Subset C	
ge 3			Subset A	Subset B	•
ge 4				Subset A	
	je 2 je 3 je 4	je 2 je 3 je 4	je 2 Subset A je 3 je 4	Je 2 Subset A Subset B ge 3 Subset A Subset A	Je 2 Subset A Subset B Subset C ge 3 Subset A Subset A Subset B ge 4 Subset A Subset A Subset A

Steady and stable implementation of the rolling production includes many datasets that are processed at various time.

и <u>g-2</u>

Instituted a system to include production shifters monitoring the data processing

Date	Stage Name	Shifter's Name	Dataset Name
2020/08/12-08/18	Pre-production	Leah (expert) + Jason, Elia (shadow)	gm2pro_daq_raw_run3_PreProd_N,O
2020/08/12-08/18	Database	Tammy (expert) + Laura, Maria (shadow)	gm2pro_daq_raw_run3_PreProd_N
2020/08/12-08/18	Full production	Liang (expert) + Lorenzo, Zhaolin (shadow)	gm2pro_daq_offline_run2E,F
2020/08/12-08/18	Subrun DQC	Fred (expert) + Josh, Paolo (shadow)	gm2pro_daq_offline_run2E,F

• • •		Ne	w entry - electronic lagbook	
dbweb8.fnal.gov:8443/ECL/gm2/E/create_entry?f=Production+Start+Checklist				
Textile formatted:	<u>Textile help</u>			
Email new entry to:	eci-support@fnal.gov talbahri@hep.ph.liv.ac.uk (Albahri, Talal) devrin@fnal.gov (Allen, Dervin) allspach@fnal.gov (Allspach, Del) angelus@fnal.gov (Angelus, John)		add ->	
Entry Subject:				
	Q1. Run period:	Run2 V		
	Q2. Raw production dataset name:		Provided by Pre-production shifter	
	Q3. Is dataset pre-stage:		If no, see <u>Production wiki</u> on how to pre-stage a dataset	
	Q4. Number of files in datasets:		samweb count-definition-files <name-of-dataset></name-of-dataset>	
Q5. Na	Q5. Name of the Full Production campaign stage:		See <u>Production wiki</u> If does not exist, contact production expert.	
Q6.	Q6. Name of the Subrun DQC campaign stage:		See <u>Production wiki</u> If does not exist, contact production expert.	
Q7. Veri	Q7. Verify the flow of POMS production campaign:		See Production wiki If false, contact production expert	
Q8. Post screen shots o	Q8. Post screen shots of the POMS campaign Stage and Job Type:		See Production wiki	
Q9.	Q9. POMS campaign is launched successfully:		See Production wiki	
	Q10. Setup future launches:		in reise, contact production expert Contact production expert for scheduling See <u>Production wiki</u>	
Q11. Pos	Q11. Post screen shot of the future launches page:		See Production wiki	

Preparing to include the in-progress Run-4 data!

153001653

• Fermilab scientists and computing professionals continue to lead the experiments in the development, integration, and production of data and software codes

Conclusions

Back up Slides

‡ Fermilab

