2021 snowmass Letter of Interest: Pushing Brightness and Current limits of Normal-Conducting Radiofrequency Electron Sources

Daniele Filippetto, Fernando Sannibale, Derun Li Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA)

Mapping source R&D on HEP needs

HEP machines

Advanced accelerators Linear colliders Circular colliders

R&D directions For Electron sources Relevant to HEP

High currents -> 100s mA Highly polarized beams Flat beams Pulse formats for injection in AAC

Synergy with Other DOE offices

Free Electron lasers Ultimate storage rings Ultrafast electron scattering

Physics and engineering requirements

Picometer-scale emittance

•High Charge (multi/nC)/low emittance

- Pulse trains for (PWFA)
- High precision longitudinal and transverse control:
 - Attosecond synchronization
 - Nanometer-scale stability
 - RF generation and distribution
- Magnetized beams
- Novel photocathodes
 - Increased lifetime
 - Polarized beams generation
 - Lower MTE
- Enhanced real-time modeling

We should leverage from work performed under BES R&D!

...

APEX: a Low Frequency CW-NC electron gun driving the next generation of MHz-class FELs and UED

Testing new cathodes for High average current operations (HEP relevance: electron cooling)

.S. DEPARTMENT OF

Office of

Science

HiRES: A compact beamline for 6D beam characterization (HEP relevance: beam shaping, flat beam production and characterization, test pulse formats for AAC)

Phys. Rev. ST Accel. Beams 15, 103501 (2012) Phys. Rev. ST Accel. Beams 18, 013401 (2015)

time

Generation of relativistic nanobeams

(HEP -> injection in AAC, testbed for nanoscale beam control and diagnostic in colliders)

Office of

Science

High precision controls

(HEP-> crosscutting theme, control of temporal and transverse stability of the beam in accelerators)

7

How does the future look like: ML-based real-time adaptive feedbacks

(HEP-> crosscutting theme, control of temporal and transverse stability of the beam in accelerators)

What are the advantages of a ML native CS?

- From local to global real-time feedbacks
 - **Performance improvement**
 - **Failure predictions**

How do we effectively use ML for accelerator control?

- Include surrogate models into the control electronics ٠
- Use supervised learning to continuously improve the model and ٠ catch time-varying effects.

How do we choose the hardware?

Static Surrogate

model

Instrumentation Node

FPGA-based electronics

Optimize for noise reduction in specific frequency bands

To/from other nodes

Front-end

Receiver

Measurement)

And archiver

Design of an Holistic control system

Front-end

Driver

(Actuator)

٠

٠

.

Fast local loops (ns)

Large unexplored parameter space in performance and applications (HEP->higher brightness would lead to smaller emittance and increase the final luminosity of the machine)

NCRF CW technology has not been fully optimized

- APEX gun was designed with a conservative nominal accelerating field values.
- Experience from continued operations (since 2012) suggests large room for improvements (no RF breakdown events).
- Electron gun accelerating field is limited by available RF power at site, not by power density or RF breakdown
- The second-generation of NCRF CW guns has not been fabricated yet, differently from other gun technologies (DC, SRF, GHz-NCRF)
- Efforts in Europe and China to design and/or fabricate improved versions of the VHF gun
- LBNL is working on a new design with improved accelerating field and output energy

Next-generation APEX

(HEP->higher brightness would lead to smaller emittance and increase the final luminosity of the machine)

		APEX-2 gun		
	APEA gun	Cell 1	Cell 2	
Frequency	185.7	162.5	162.5	MHz
Peak acceleration field	19.5	34	25	MV/m
Gun voltage	750	820	820	kV
Average RF power	90	91	85	kW
Shunt impedance	6.3	7.3	7.8	Mohm
Peak surface field	24.1	37	25	MV/m
Peak thermal power density	25	32	30	W/cm ²
Diameter/Length	69.4/35.0	78.6/38.7	78.2/36	cm

ACCELERATOR TECHNOLOGY & ATAP

.....

BERKELEY LAB

Emittance and peak current performance at 100 MeV

(HEP->higher brightness would lead to smaller emittance and increase the final luminosity of the machine)

cell 2 exit nose cone solenoid coil

Solenoid quality factor improved by 2.7

Current APEX gun

Parameter	LCLSII	
ε _{xn} (100%) [μm]	0.1881	
ε _{xn} (95%) [μm]	0.1621	
Peak current [A]	12.0	
KE [MeV]	88.0	
HOM* [keV/c]	3.25	

Parameter	30 MV/m	35 MV/m
ε _{xn} (100%) [μm]	0.1033	0.0968
ε _{xn} (95%) [μm]	0.0897	0.0839
Peak current [A]	12.0	12.0
KE [MeV]	115	124
HOM* [keV/c]	3.66	6.63

Main contributions to improved performance:

- Higher cathode field allow smaller laser spots
- Higher output energy allow for smaller e-beams
- Embedded solenoid in second cavity minimize aberrations

Conclusions

- <u>NC-RF CW cavities provide a perfect setup to test the generation of electron beams for HEP-relevant</u> <u>applications</u>
- The MHz repetition rate has been successfully used to produce <u>mA-class current</u>, and/or to lower the beam <u>emittance to picometer-scale</u>
- <u>Vacuum levels</u> reached during operations allowed operations with semiconductor cathode materials.
- The cavity is fully compatible with strong <u>magnetic fields at the cathode (for tests with flat beams)</u>
- HEP requirements for electron sources are synergetic but more challenging than BES. Beam parameters need to be pushed beyond what has been demonstrated (no clear showstopper at the moment)
- It is a mature technology, with a large room for improvement.
- The RF design of the NC-CW RF cavity has been optimized around 1 accelerating field value, which has been demonstrated to be a conservative working point.
- There hasn't been serious R&D to understand the limitation of such technology and how it compares with others.
- A full RF design of the next generation of the APEX gun has been carried out at LBNL. The design includes the downstream low energy beamline for optimal performance.

