2021 snowmass Letter of Interest: Pushing Brightness and Current limits of Normal-
Conducting Radiofrequency Electron Sources

Daniele Filippetto, Fernando Sannibale, Derun L1
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA)

Office of

:
A =
el s ATA P (0 ENERGY |z

BERKELEY LAB




Mapping source R&D on HEP needs

HEP machines

Advanced accelerators
Linear colliders
Circular colliders

R&D directions
For Electron sources
Relevant to HEP

High currents -> 100s mA

Highly polarized beams

Flat beams

Pulse formats for injection in AAC

Synergy with Other DOE offices

Free Electron lasers
Ultimate storage rings
Ultrafast electron scattering

We should leverage from work performed under BES R&D!
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Physics and engineering
requirements

* Picometer-scale emittance
*High Charge (multi/nC)/low emittance
* Pulse trains for (PWFA)
* High precision longitudinal and
transverse control:

* Attosecond synchronization

* Nanometer-scale stability

* RF generation and distribution
* Magnetized beams
* Novel photocathodes

* Increased lifetime

* Polarized beams generation

* Lower MTE
* Enhanced real-time modeling
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APEX: a Low Frequency CW-NC electron gun

driving the next generation of MHz-class FELs and UED
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Cavity design
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Testing new cathodes for High average current operations
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(HEP relevance: electron cooling)
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PEA Cesium Telluride Cs,Te

-- high QE > 1%

--for 1 MHz and 1 nC, ~ 10 W 1060nm required
-photo-emits in the UV

-robust

Exposure to Oxygen (Langmuirs)
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Appl. Phys. Lett. 107, 042104 (2015)

PEA CsK,Sb, (H. Padmore’s group LBNL)
- reactive; requires ~ 10-'° Torr pressure
-high QE > 1%

- photoemits with green

-fornC, 1 MHz, ~ 1 W of IR required

central slice emittance vs beam charge
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HIRES: A compact beamline for 6D beam characterization

(HEP relevance: beam shaping, flat beam production and characterization, test pulse formats for AAC)

= I
: rf buncher 1‘\ |
4 N

“"7 A \ = W ' »... 28 | < &
'»},;‘:'_ “\"('!-l VA ST - = T" i‘w*‘:’“‘ il g

R A ~
' I3

:\_1\,-.‘\.. 3
UED detecfor : }? ®% JPB: Atom. and Mol. And Opt. Phys. Vol 49, 2016
45-» j

~105-10° e-
~10 fs-1000 ps

~ NS-MS l

WM Spectrometer §
detector

mA- class average currents High dynamic range diagnostic

: 0-08_ | |
=4 z .
004 Co;Te, 0.1 mA, ~25C , : Pulse trains
0.00-— : : : ‘ r 10f10
1.6 1.8 2.0 22 24 2.6
Time [days] 5l f\
0.20F T T T T T = /
015 W e - | — 1 L
2 010} _ 850 560 570 580 590 0
Cs;Te, 0.3 mA,~5C Kinetic energy (keV)
0.05| . 1
0.00="s : 0 : : — Phys. Rev. ST Accel. Beams 15, 103501 (2012)
Time [hours] Phys. Rev. ST Accel. Beams 18, 013401 (2015)

~

% U.S. DEPARTMENT OF Offlce Of

v !
ol st ATAPD %/ENERGY | scence

BERKELEY LAB




Generation of relativistic nanobeams

(HEP -> |nject|on in AAC testbed for nanoscale beam control and diagnostic in colllders)
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High precision controls

(HEP-> crosscutting theme, control of temporal and transverse stability of the beam in accelerators)
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How does the future look like: ML-based real-time adaptive feedbacks

(HEP-> crosscutting theme, control of temporal and transverse stability of the beam in accelerators)

What are the advantages of a ML native CS? Design of an Holistic control system

e From local to global real-time feedbacks
* Performance improvement

Online Adaptive model tuning
High-performance

* Failure predictions Data Archiver Global ML-based
. computation Engine
How do we effectively use ML for accelerator control? .i —>
. . — FPGA/GPU based :
* Include surrogate models into the control electronics —_— High throughput, low latency

A . .
communication backbone

* Use supervised learning to continuously improve the model and

catch time-varying effects. - - - - - - - s
How do we choose the hardware? | Lo oy ee— roncend | ftramensin
* Optimize for noise reduction in specific frequency bands
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Large unexplored parameter space in performance and applications

(HEP->higher brightness would lead to smaller emittance and increase the final luminosity of the machine)

NCRF CW technology has not been fully optimized

* APEX gun was designed with a conservative nominal accelerating field values.

* Experience from continued operations (since 2012) suggests large room for improvements (no RF breakdown events).

* Electron gun accelerating field is limited by available RF power at site, not by power density or RF breakdown

 The second-generation of NCRF CW guns has not been fabricated yet, differently from other gun technologies (DC, SRF,
GHz-NCRF)

« Efforts in Europe and China to design and/or fabricate improved versions of the VHF gun

 LBNL is working on a new design with improved accelerating fleld and output energy
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Next-generation APEX

(HEP->higher brightness would lead to smaller emittance and increase the final luminosity of the machine)

Vacuum ) Gun Cell Ring
Vessel Single Resonator Focusing solenoid
Cavity e-beam with ability of
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APEX-2 gun
APEX gun Cell 1 Cell 2
Frequency 185.7 162.5 162.5 MHz
Peak acceleration field 19.5 34 25 MV/m
Gun voltage 750 820 820 kV
Average RF power 90 91 85 kW
Shunt impedance 6.3 7.3 7.8 Mohm
Peak surface field 24 1 37 25 MV/m
Peak thermal power density 25 32 30 W/cm?
Diameter/Length 69.4/35.0 78.6/38.7 78.2/36 cm
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Emittance and peak current performance at 100 MeV

(HEP->higher brightness would lead to smaller emittance and increase the final luminosity of the machine)
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nose cone

solenoid coil
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Solenoid quality factor
improved by 2.7

Main contributions to improved performance:

« Higher cathode field allow smaller laser spots

* Higher output energy allow for smaller e-beams

* Embedded solenoid in second cavity minimize
aberrations
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Conclusions

NC-RF CW cavities provide a perfect setup to test the generation of electron beams for HEP-relevant
applications

The MHz repetition rate has been successfully used to produce mA-class current, and/or to lower the
beam emittance to picometer-scale

Vacuum levels reached during operations allowed operations with semiconductor cathode materials.
The cavity is fully compatible with strong magnetic fields at the cathode (for tests with flat beams)

HEP requirements for electron sources are synergetic but more challenging than BES. Beam parameters
need to be pushed beyond what has been demonstrated (no clear showstopper at the moment)

It is a mature technology, with a large room for improvement.

The RF design of the NC-CW RF cavity has been optimized around 1 accelerating field value, which has
been demonstrated to be a conservative working point.

There hasn’t been serious R&D to understand the limitation of such technology and how it compares
with others.

A full RF design of the next generation of the APEX gun has been carried out at LBNL. The design
includes the downstream low energy beamline for optimal performance.

:
/\ — - "‘-, U.S. DEPARTMENT OF Offlce of
n o

ce ] acomroneomaoss A4 T A P)) {9 ENERGY | 2o

BERKELEY LAB




