Cavity R&D as part of optimizing the FCC Colliders

Franck Peauger on behalf of the FCC SRF team SY/RF/SRF

26-Jan-2021

Snowmass AF7 – Subgroup RF – miniWorkshop on Innovative Design and Modeling

RF systems in the FCC tunnel

FCC ee

- Point J and point D are straight sections dedicated to RF cavities and klystrons
- Involve 1364 cavities in total
- Total length of straight section without kickers: 2.2 km

- FCC hh
- The RF system is similar to the one of LHC
 - Total voltage of 48 MV (24 LHC type cavities)

FCCee RF system baseline

WP	V _{rf} [GV]	#bunches	I _{beam} [mA]
Z	0.1	16640	1390
W	0.44	2000	147
Н	2.0	393	29
ttbar	10.9	48	5.4

- Designed for fixed synchrotron radiation power of 50 MW per beam
- Elliptical shape cavities in CW mode

RF power & FPC coupling requirements

- The FCCee RF system baseline design requires the development of different types of klystrons, delivering different RF power levels (from 200 kW to 1 MW)
- Variable RF Fundamental Power Couplers (FPC) at 1 MW are also needed
- It will be necessary to switch back from H to Z operation at lower beam current, in order to perform physics calibration

Cavity Design for the Z machine

FPC

- **First step for FCCee**
- Single cell elliptical cavity, strongly damped for high current operation (1.39 A)

Rect. waveguide

280 x 140 mm

Cavity fabrication technologies R&D

Improvement of engineering technics of elliptical coated copper cavities

- Half cells manufacturing
- Seamless technics
- Internal electron beam welding
- Chemical electropolishing

Improvement of thin film deposition technics of RF superconductors

- Niobium on Copper sputtering
- HIPIMS
- A15 on copper

→ See talk at TTC meeting – Stephanie Fernandez (CERN) (21th of Jan. 2021)

TTC 2021, TESLA Technology Collaboration (19-21 January 2021): Nb3Sn and V3Si as thin films on Cu toward SRF applications (15+5) · DESY-Konferenzverwaltung (Indico)

→ Welding iris and equator from inside

T. Demazière, G. Fabre (CERN)

Challenging the high level RF parameters of FCCee

Can we find an alternative cavity design to optimize the whole RF system configuration and operation ?

- Changing of the cavity parameters brings very interesting opportunities
- For example:
- Point 1 : $Q_L = 6^e 5$, $P_{in} = 250 \text{ kW}$
 - H energy at nominal current
 - W energy at nominal current
 - Z energy at 0.25 A (for physics calibration)
- Point 2: Q_L=1^e4, P_{in} = 240 kW
 - Z energy at nominal current
- Spanning Q_L from 1^e4 to 6^e5 with a 100 mm variable FPC is typically equivalent to 60 mm range antenna displacement (same as LHC cavities)
- Common RF input power of 300 kW for the klystrons (same as LHC klystrons)

Alternative cavity design studies

- Tentative design of various cavity shapes
- Peak fields optimization at fixed r/Q

Parameters	LHC	HWR	Re- entrant	QWR Ver1	QWR Ver2	Spoke	
Frequency [MHz]	400.79						
Operating temperature [K]	4.5						
Nominal Accelerating Voltage V _{acc} = (E _{acc} x L _{acc}) [MV]	4						
Accelerating gradient E _{acc} [MV/m]	10.6						
Circuit r/Q [Ω] at β =1	42.7	41.9	44.33	46.69	44.8	63.25	
E_{pk}/E_{acc} at $\beta=1$	2.4	2.15	6.05	3.92	3.97	3.85	
B_{pk}/E_{acc} [mT/(MV/m)] at β =1	5.08	5.25	11.05	7.22	7.31	10	
Max. surface field E _{pk} [MV/m]	25.7	23	64.7	42	42.77	41.14	
Max. surface magnetic field B _{pk} [mT]	54.3	56.3	118.2	77.4	78.88	106.75	
Stored energy [J] at nominal E_{acc} and $\beta{=}1$	74	76	71.48	67.8	70.3	50.32	
Aperture [mm]	300	170	220	313.5	220	283.7	
Cavity envelope [mm]	688	790	556	637	665	543.8	

Very compact and very few number of Higher Order Modes

Parameters	LHC	Re-entrant cavity	
Frequency [MHz]	400.79	401.8	
Nominal Accelerating Voltage [MV]	2	2	4
Circuit r/Q [Ω] at β =1	42.7	44.33	
G [Ω]	256.9	126.7	
E_{pk}/E_{acc} at $\beta=1$	2.4	6.05	
B_{pk}/E_{acc} [mT/(MV/m)] at β =1	5.08	11.05	
Max. surface field E _{pk} [MV/m]	12.85	32.43	64.87
Max. surface magnetic field B _{pk} [mT]	27.11	59.23	118.45
Stored energy [J] at nominal E_{acc} and $\beta{=}1$	18.5	17.87	71.48
Aperture [mm]	300	220	
Cavity envelope [mm]	688	556	

Re-entrant cavity with 300 mm aperture

Parameters	LHC	Re-entrant cavity V2	
Frequency [MHz]	400.79	400.82	
Nominal Accelerating Voltage [MV]	2	2	
Circuit r/Q [Ω] at β =1	42.7	41	
G [Ω]	256.9		
E_{pk}/E_{acc} at $\beta=1$	2.4	5.35	
B_{pk}/E_{acc} [mT/(MV/m)] at β =1	5.08	9.74	
Max. surface field E _{pk} [MV/m]	12.85	28.6	
Max. surface magnetic field B _{pk} [mT]	27.11	52.1	
Stored energy [J] at E_{acc} and $\beta{=}1$	18.5	19.3	
Aperture [mm]	300	300	
Cavity envelope [mm]	688	580	

Summary

> In the next 5 years, the FCC SRF team will focus on various R&D topics, including:

- Review of the operational scenarii (Z <-> W <-> H <-> ttb machines)
- $\circ~$ RF design of various cavity shapes
 - \circ $\,$ Including beam dynamics and LLRF studies $\,$
- New manufacturing technics (seamless cavities, internal EB welding and electropolishing of copper cavities)
- Optimisation of coating process including HIPIMS
- R&D on A15 materials on copper substrates
 - \circ $\,$ Important for energy savings
- High power RF coupler up to 1 MW in CW at 400 MHz and HOM power extraction schemes (especially for the Z machine)
- o Review of the RF power sources choices and RF distribution configuration in the tunnel
- Building prototype cavities and a cryomodule demonstrator is also the target

