

RF computations: Needs in performance, capability, and optimization **COMPUTATIONS: Needs in performance,**
Capability, and optimization
(John Cary
edgments: Greg Werner, Ilya Zilberter, Slava Yakovlev,
Frank Marhauser, Gennady Morozov, Haipeng Wang)
January 26, 2021

(John Cary

Acknowledgments: Greg Werner, Ilya Zilberter, Slava Yakovlev, John Cash (John Cash (John Cash (John Cash (John Cash (Frank Marhauser, Gennady Morozov, Haipeng War
Frank Marhauser, Gennady Morozov, Haipeng War
January 26, 20
Existing capabilities
Performance Needs
Capability Needs
Opt

January 26, 2021

Existing capabilities Performance Needs Capability Needs Optimization Needs

V. Yakovlev, "RF accelerating structures", PHY863, MSU, 2018092[5-7]
Gennady Romanov, "Multipactor simulations at FNAL with CST Particle Studio", PIP-II Workshop, 20201203

TECH-X Many tools for SRF cavity modeling. Why?

Different codes have different strengths (not exhaustive list), but there are associated costs ■ Different codes have different strengths (not examed to the Surface fields are accurate in unstructured mesh

surface fields are accurate in unstructured mesh

onega-3p

• Self-consistent modeling is fast in structure

- Surface fields are accurate in unstructured mesh codes
	- o HFSS
	- o Analyst
	- o Omega-3p
- Self-consistent modeling is fast in structured mesh codes
	- o CST PIC
	- o VSim
- window (Gdfidl) or to solve for many (1000s) of modes (VSim)
- Commercial codes have ease of use
	- o HFSS
	- o CST
	- o VSim

Costs

- Requires learning many different codes
	- o Interfaces
	- \circ How to interpret output
- Requires benchmarking the many different codes
- Requires paying for the many different codes

Recent algorithmic discoveries reduce cost and effort! Multipacting **Wakefields Optimization**

Multipacting requires multiple solvers even when within
one toolset
preanov "Fermilah — in 2009 we switched **TECH-X** one toolset

• G Romanov, "Fermilab ... in 2009 we switched completely to (CST) Particle in Cell solver" o Pros: …, space-charge effects, …, user-friendly interface The toolset

one toolset

comanov, "Fermilab ... in 2009 we switched

npletely to (CST) Particle in Cell solver"

cos: ..., space-charge effects, ..., user-friendly

terface

ons:

...

Rectangular mesh in PIC solver

Impo ORTIFIELD 12017 1211010 III CONTROLL OF PROSIDENTIFIELD OF PROSIDENT INTERNATION CONSIDENT INTERNATION CONTROLL TO SAVE CHECK PARTICLES

IN THE SCRIPT FIELD AND RESPONSIVE THE PROPORTION CONTROLL OF SURFER CONTROLL TO SA

o Cons:

- …… in the second control of the second
- Rectangular mesh in PIC solver
- Imported field interpolation each time amplitude The NATE AND 16 MILLION PPG, RESPECTIVELY. EACH OPERATION IS PRECEDED The same of the same of the simulations Empowering your Innovations

2. Solve for fields interpolation each time amplitude
 2. Solve charge effects important, but
 2. Solve for fields, track particles

2. Solve for fie
- Space charge effects important, but
- Need unstructured mesh to get accurate fields?

Two modes of simulation

-
-

Example: unstructured mesh PIC ~ 15x time for push and scatter

Given desire to use structured mesh PIC solver (for speed), how to get accuracy?

Space charge is important for Multipactor limiting
Dace charge
Dace charge **TECH-X**

between charged macroparticles AND between macroparticles and surrounding (charging of isolated bodies, mirror charge etc).

MP is a space charge limited process. Particle dynamic is different with space charge, but the locations of MP barriers are practically the same with and without space charge effects.

December 3, 2020

²⁰²¹⁰¹²⁶ Simulations Empowering your Innovations ⁵

6

Cut-cell FDTD (VSim, CST) gives global quantities X **TECH-X** accurately

● Origin is use of cut cells

Modify magnetic update for cells cut by boundary

Small area ⇒ large coefficient ⇒ unstable Drop minimal number of faces O(1) error locally:

2nd order error globally

 10^{-1}

 $\Delta y/L_{y, \, \rm waveguide}$

Extraction errors

 $10⁰$

1st order 2nd order

https://doi.org/10.1016/j.jcp.2009.07.025

 $10⁰$

 10^{-1}

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}
 10^{-2}

error

But near-surface fields do not converge

- Fields from 3 cells in
- https://doi.org/10.1016/j.jcp.2010.12.005

Near-surface fields found accurately with implicit solve

- Fields from 3 cells in ● https://doi.org/10.1016/j.jcp.2010.12.005
- Time step reduction removed with implicit accurately with implicit solve
Fields from 3 cells in
https://doi.org/10.1016/j.jcp.2010.12.005
Time step reduction removed with implicit
solve - no net computational increase over
explicit?
Can one do implicit only over b explicit?
- Can one do implicit only over boundary?

Surface fields in EMPIC suffer from basic incompatibility

- Fields solved on interior edges
- Fields averaged to nodes
- Nodes interpolated to particle position
- O(1) error to neglect exterior nodes (or edges or ...)
- How to get field at exterior node? (extrapolation)

Proper extrapolation gives accurate edge fields

- With extrapolated nodal fields from a cut-cell electrostatic simulation.
- Research needed for EM

• Possible to have desired EMPIC with accurate edge fields

● Need: remove edge field error from consideration with higher-order extrapolation?

Wakefield calculations: commercial not keeping up Wakefield calculations: commercial not keeping up
• Moving window – why one more piece of software?
● Gdfidl (http://www.gdfidl.de/): used by FNAL. Accurate, but
• no particles
• only Linux Wakefield calculations: commercial not keeping up
Moving window – why one more piece of software?
© Gdfidl (http://www.gdfidl.de/): used by FNAL. Accurate, but
• no particles
© ABCl (https://abci.kek.jp/abci.htm): no MPI p

- - - no particles
		- only Linux
	- o ABCI (https://abci.kek.jp/abci.htm): no MPI parallelism, no customer support
	- o Echo (https://echo4d.de/): is being used for USPAS.
- Sum of modes
	- \circ Need rapid computations of \sim 1000 modes.
	- o Filter diagonalization? https://doi.org/10.1016/j.jcp.2008.01.040

Can we bring new tools to optimization?

- ./2018CaryICOPS/mov/PhcOptSymNoOverlapLabeled.mov
- Numerical optimization can lead to the unexpected

- 1. get close
- 2. converge

Adjoint computations - new approach to getting derivatives
Forward solve gives current solution
Forward solve gives current solution

- Forward solve gives current solution
- Backward solve with functional derivative with merit function
- Inner product gives derivatives
- Derivatives compute step change, give new system
- Rinse and repeat as necessary

Mode matching needed in photonics

- Integrate adjoint equation (same for Maxwell)
- \bullet With source = functional derivative of goal
- Then take inner product with derivative of dynamical operator

$$
\Gamma = \int dy \left| \frac{\partial^2 D_z}{\partial x \partial y} \right|^2 \qquad \frac{\partial T}{\partial D_z} = \frac{\partial^4 D_z}{\partial x^2 \partial y^2}
$$

$$
\frac{\partial T}{\partial p_k} = \omega^2 \int dV \mathbf{D}_A \cdot \frac{\partial \varepsilon^{-1}}{\partial p_k} \cdot \mathbf{D}
$$

TECH-X Mode matching shows location of inner product; better solution obtained

²⁰²¹⁰¹²⁶ Simulations Empowering your Innovations ¹⁶

Research needed, as the PEC cut-cell operator is not **TECH-X** differentiable

$$
\frac{\partial T}{\partial p_k} = \omega^2 \int dV \mathbf{D}_A \cdot \frac{\partial \varepsilon^{-1}}{\partial p_k} \cdot \mathbf{D} \longrightarrow \frac{\partial T}{\partial p_k} = \omega^2 \int dV \mathbf{E}_A \cdot \mathbf{C}^T \frac{\partial (\mathbf{A}^{-1} \mathbf{C} \mathbf{L})}{\partial p_k} \cdot \mathbf{E}
$$
\n• Averagely permittivity is piece-wise
continuous function of boundary location
\n• But length over inverse area increases
until dropped
\n• Possible solutions
\n• Write in terms of surface fields
\n• Create a piecewise differentiable operator
\n
$$
\begin{array}{c}\n\text{Simulting. For every integer, the product of the form of the form of the form } \n\end{array}
$$

- Averaged permittivity is piece-wise continuous function of boundary location
- But length over inverse area increases until dropped
- - o Write in terms of surface fields
	-

Adjoint optimization could give a direct approach to
determining the effects of wake fields
• Compute the field at the bunch(es) of interest directly
• Optimize shape to minimize the wakefield kick X Adjoint optimization could give a direct approach to determining the effects of wake fields

- Compute the field at the bunch(es) of interest directly
-

Define standard benchmarking problems for vetting codes **Define standard benchmarking prol
Define standard benchmarking prol
Cavity basics
© Surface fields
Wake fields
© Many-mode solver** Define standard benchmarking pro
Cavity basics
o Surface fields
o Higher order?
Wake fields
wany-mode solver
o Many-mode solver

- Cavity basics
	-
	-
- Wake fields
	- o Many-mode solver
	- o Moving window
- Multipacting
- Define standard benchmarking problems for vetting codes

Cavity basics

 Surface fields

 Higher order?

Wake fields

 Many-mode solver

 Moving window

← "Multipaction and breakdown susceptibility and mitigation in s systems", (MSU, UMich, UWisc, UNM, Texas Tech)
	- o Something with HEP orientation?

All of this cheaper by using the cloud

- Get rid of capital expense of computers
- No need for installation
- No need to buy hardware
- Pay for what you use
- **and the Control of Control**

 Get rid of capital expense of

 No need for installation

 No need to buy hardware

 Pay for what you use

 Green by natural incentive

 Use what you need, not what

 you can \circ Use what you need, not what you can

- Any new computational applications should be able to export and import data and fields to the other applications
	- o ANSYS mechanical
	- o ANSYS thermal

TECH-X Summary of directions

- RF modeling dominated by commercial sector, but innovations are no longer coming out of "established commercial codes"
	- o Not developing algorithms, support has deteriorated.
	- o Accelerators, charged particles not a large enough market, "the customer service is not anymore so much serving the accelerating community once code-XYZ became a successful suite of codes usable outside our community,"
	- o Public-private model?
- There are many new directions in RF modeling ready to be brought into a product
	- o PIC with Accurate surface fields
	- o Multimode solvers
	- o Adjoint optimization
- Commercial funding by itself insufficient. HEP Funding to create these capabilities insufficient. Public-private partnership?