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It is relatively 
straightforward to predict 
where genes are in genomes, 
even newly sequenced, novel 

isolates.
Figuring out what new genes do

however, is not trivial.
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Classification / Annotation:
Does this sequence have the same function or job as a sequence in some 

training data whose function or job is known?

Give a novel sequence a descriptive and succinct label that represents that
sequence’s function.



>NewSequence01
MSADDHGMRNVPKHIFNKGLK…

>LibrarySequence05
MKIHKLTPCEFMENRSQYKYA…

>LibrarySequence06
MDKKWYYKWEMRQECDPRSVD…

>LibrarySequence07
MNCWHTWMMKDRRNIGETCHM…

>LibrarySequence08
MFRARYHMPHTCYESGPMHKD…

>LibrarySequence01
MQRNRLFSENTTELMSTPHHD…

>LibrarySequence02
MAIRQWMMIGKHLCRFELRRF…

>LibrarySequence03
MHLWPWIMQDEFEVAMCWRQK…

>LibrarySequence04
MSQWPSNERMEANDDGRTGYS…

Does this sequence have a 
function with a representative 

in this library?



TL;DR we built a classifier:
• Accurate functional 

classification is difficult
• Emphasis on conservative 

classification to avoid 
overclassification of truly 
novel sequences
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Publication coming soon!
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This work would not have been 
possible without the open science 
grid:
• Data preparation
• Parameter tuning

• k-mer characteristics
• Cross validation
• Testing, testing, testing …

Publication coming soon!



One last bit of biology to introduce:

>Sequence01
MSADDHGMRNVPKHIFNKGLKHWPKYRPITWQLSDFGEWEFDS

>Sequence02
MDQKMGDQCTPDHGMRNVPKHIFNKYPASTNEKDHYNMLDGAVNE

If this word/k-mer appears here there is implied significance.

What about with minor changes?

What about with major changes?
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Test alphabet performance, perform a reduction, test again, 
repeat ad nauseum.

Performance of our classifier improves when the standard amino
acid alphabet is substituted with a reduced alphabet:



Standard
Alphabet:
1 test 1

2

3

…

n

1 Level
Reductions
190 tests

1

2

3

…

n

2 Level
Reductions

15,675 tests

~ 51.7 trillion
possible alphabets
(a Stirling number of the 

second kind)

If reduced alphabets provide improved performance, how do we 
select the *best* reduced alphabet?



Generate 
alphabets to 

test

Test alphabets

Select best 
performing 
alphabets

51.7 trillion tests is probably 
too many tests.
• Iterate down through alphabet 
sizes

• Only test reductions of highest
performing alphabets from
previous level

• Avoid brute force testing of 
every possible alphabet



We’ve got a DAG for that …

Test, Consolidate, Repeat
• Testing alphabets has modest 
requirements:
• 1 CPU
• 1 GB disk
• > 4 GB memory

• Consolidating results at each
level has trivial requirements:
• 1 CPU
• 1 GB disk
• 2 GB memory
• During consolidation,
parameters for next level 
are set



We’ve got a DAG for that …
And we try to keep it simple:
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Other cool tidbits:

A typical job set up for us:
Perform all pairwise comparisons in 

a set of genomes – give 1
comparison to each node.

With relatively trivial 
requirements for nodes (1 GB disk, 
2 GB memory, 1 CPU) we can complete 
~ 70,000 jobs at 10 minutes per job 

in a weekend.
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Other cool tidbits:

Monitoring jobs in real time is 
complicated.

npcooley$ watch –n 5 condor_q

But we’re not always at a work
computer and ssh’d into our login

node

Discord can collect results for us 
but …
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