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ML for Data selection

Motivation (MPhys projects)

e ML based R&D plans for Data Selection interested some
undergrad students.

e This was setup as preliminary studies (MPhys projects),
unfortunately COVID-19 brought it to an abrupt end (hopefully
just a pause).

* \We would like to continue this studies trying to use TC to NN.
With possible outputs as: TDecision, event classification (HLF),
ROI (#APA, time window ...), early pointing resolution ...
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Event classification using deep learning

e 20k Marley + gaushit
generated SN + 20k
radiological events into
2D hits histograms
(1500x1500 pixels)
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Event classification using deep learning

Results - CNN
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Neural networks for event reconstruction

* Uses hits as inputs (wire position, drift [ et iows”of the ]
time, width, amplitude, collected e e e
charge) .
* Cluster hits coming from same particle Uplane
* Graph network for pattern together — wire position and drift time
recognition give 2D image (“view”) :
* |dentify interaction vertices ;* " e
. . . V plane
* |[dentify hierarchies (parent-daughter i
links)
* Match 2D clusters into 3D trajectories
- X e X plane
. . | . : » - B, : '- : - = ==l i Drift time (common to all planes) 7
Graph neural networks (GNNS) ) B A. Smith, The Pandora multi-algorithm approach to pattern recognition (slides DESY, 16/9/2019)

* Graph is a set of nodes with some features, with edges describing
relationships between them
* Natural representation of LArTPC data:
* Nodes = hits
* Node features = hit wire, hit time

* Edges connect hits into clusters/tracks
* Edge features: distance between hits (in wire and time) Input net Edge net Edge net - Edge net
GNN

-.Edge-classifying GNN architecture -

* Variable input size (number of hits in event)

. . * 2 multi-layer perceptron components:
[ )
Efficient representation of Sparse data . !Edge network computes weights for every edge using the features of the two nodes
* Can classify nodes, edges or whole graph It connects
Y ) » €08 grap ) * Node network computes new features for every node using aggregated features of
* My GNN: classify edges as correct or wrong connections edges
12 * Each has 2 hidden layers with 128 nodes and RelLU activation
* 8 iterations; each propagates features from each node further through
graph

* Sigmoid activation on final layer
* Implemented using DeepMind’s graph_nets
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Neural networks for event reconstruction

Simulation

* LArSoft

* Monte Carlo generator
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Graph construction

Target definition

» Separate graph for each frame, only collection wires .
P grap , only * To be labelled 1, an edge must connect hits 5 x
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Neural networks for event reconstruction

GNN trainin’g-

e 2147 graphs split into 3 sets:
* Training: 56%
* Validation: 14%
* Testing: 30%
* Train target:
* 360 000 true edges
* 9.5 million fake edges
* True/fake ratio: 0.04

* Loss: binary cross entropy, with
weight of 0.04 for false edges

* Batches of 9
* 65 epochs
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GNN results — test data

* Best cut on model output: 0.47 (TPR =99.7%, FPR = 0.3%)
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* Accuracy with discrimination threshold of 0.47: 99.7%
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ML for Data selection
Summary

* Two studies of the implementation of NN for event classification and
reconstruction performed.

* The comparison of SparseNN and CNN was not fully completed but
laid out a starting point.

e Successful implementation of a GraphNN, larger data set would be
needed for better performance studies.

* Although results shown are encouraging, there’s still lots to do. We’ll
take over with improvements (apart form fixing things):
Metric comparison, Trigger candidates ...
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