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The MINOS Experiment
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Detectors consist of
alternating layers of
steel plates and
scintillator strips in a
~1.3 T toroidal
magnetic field

735 km
baseline
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MINOS TIMING




Minos Timing Spec

* Neutrinos created in bunches separated by
19 ns

 ~ 1 neutrino/day detected in Soudan Mine
— 2 milliseconds travel time

 Must know which bunch created the
observed neutrino
* Bunches are about 6 ns wide

— To become 3.5 ns wide after planned upgrade in
2013

* Therefore want 1 ns RMS **ALWAYS**




What Kind of Clocks for 1 ns spec?

* Rubidium

« Standard Performance Cesium
« High Performance Cesium
 Maser




Considerations

« Stabllity
* Cost
* Environmental requirements
* Reliability
* Delivery time
— Fermilab ordering latency <2 weeks!




Time Transfer Options

e GPS
— Direct access (code) - too noisy

— Precise Point Positioning (PPP)
« Carrier Phase
» Best way for day-to-day
* NIST has supplied 6 NovAtel receivers

« TWSTT — Important for calibration
— USNO has a specially designed SUV
* Fibers
— |IEEE1588 or pure tone with out-of-band calibration
— No low-cost Fermilab to Soudan Mine connections known
— Not yet tested for operational time transfer




Clock Options

« High-Performance Cesiums
— A good cesium on a bad day varies 5 ns (2-sigma)
— Cost ~ $70K each
— Tube Warranty: 5 years
— Short-term stabilities ~ square root(tau)
* In one hour, the two sigma time deviation is ~ 1 ns
« Standard Performance Cesiums
— 2-3 times noisier than high performance units
— 12 year warranty

 Rubidiums

— Super-fancy: Fiber connections & GPS-disciplined, $20K
— Excellent: GPS disciplined rubidiums $5K-10K
— Good: free-running rubidiums: $2-5K




GPS-Disciplined Rubidium
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Undisciplined ATS6051

corrected with PPP
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Clock and Time Transfer

Conclusions

* Rubidiums corrected with PPP data will meet
specs

« But standard-performance cesiums have
benefits
— Longer holdover time
— Variations less likely to cause numerical problems

— They are more temperature-stable
* Very important for upstairs/downstairs calibrations

— Will give more confidence politically
— USNO has loaned two for free




Upstairs/Downstairs

Fiber tempco ~ 15 ps/degC/Km (manufacturer
specs)

— Tempcos may be much higher when jacketed

— Adjacent fibers experience temperature offsets

— Diurnal = 30 ps for 100 m * 20 degC (assumed
variation)

— Coax < Fiber modules have tempcos
Round-trip correction desirable
Separate fiber paths for 1-pps and 10 MHz

USNO plan has redundant uplinks
— Link calibration can be done by switching components




At The Far Detector




A Brief Overview

GPS PRECISE POINT
POSITIONING




What is GPS PPP?

« GPS PPP Is a way to use precise
ephemerides published by the
International GNSS Service (IGS) along
with code and carrier phase GPS
measurements to compute a precise
solution from a single GPS receiver

* Many additional physical effects have to
be modeled to achieve a precise, day-to-
_. day repeatable solution




Differences from CORS

A precise position and timing solution can be
computed from a single receiver
Almost always used after-the-fact

— Experiments are being conducted on real-time PPP, but
the solution takes longer to converge than double-
differencing (~30 minutes)

Many physical phenomena which cancel when double-
differencing must be modeled or measured

Additional error sources such as satellite phase center
variations and total group delay differences in satellite
and user equipment must be included

Dependent on IGS orbit and clock products
Time transfer is possible on much longer baselines!




GNSS Code and Phase

* Two range measurement types in GNSS

* Pseudorange
— The code measurement

— Delivered in “chips” at 1.023x10° chips/s for
L1 C/A

— 10x that for L2 P(Y) codes

— Contains a timestamp -> is “coded”, hence
code

— Susceptible to multipath interference




GNSS Code and Phase

 Two range measurement types in GNSS

« Carrier phase
— Phase measurement

— Not timestamped

— Delivered at 1,575.42x10% Hz for L1, 1227.6x10°
Hz for L2

— An order of magnitude (or more) greater precision
and multipath resistance!

— An integer ambiguity exists to relate the code to
the carrier, allowing the carrier measurement to
be used

* PPP estimates this ambiguity




PPP Day Boundary

Discontinuities

 PPP estimates the ambiguity between the
code and the carrier by averaging the
corrected code to the carrier

* Code Is noisy, the average Is not constant
day-to-day
— Different processing techniqgues can make up for
this, such as processing multiple days at a time

* These result in day-boundary discontinuities
iIn PPP solutions




Physical Phenomena

Solid-earth tides

— The motion of the Earth around the Sun and the Moon around the Earth
also causes motion of the solid earth

— These motions are very smooth and easy to calculate
— Can cause diurnals of more than 20 cm (almost 60 cm in Boulder)

Ocean loading

— Much like solid-earth tides, the tidal cycle of the ocean can influence a
PPP solution, particularly at sites close to the ocean

— A particularly dramatic location is Cornwall, England, which can move
approximately 14 cm in 6 hours!

lonospheric delay

— Can be measured directly with a dual-frequency receiver
Tropospheric delay

— Can either be provided or modeled

— In dual-frequency PPP, the ability to model the troposphere is
equivalent to using a measured solution




Additional Error Sources

« Total Group Delay variation among GPS satellites

— C1->P1 biases: needed for receivers that do not
produce a P1 measurement, such as the NovAtel
receivers used in the MINOS experiment

— L1->L2 biases: broadcast TGD value has a
noticeable quantization error

« Satellite and User antenna phase center variations

« Satellite clock and position

— Broadcast messages have a quantization error and
become degraded as time passes from uploading




|GS Products

* Precise orbit and clock products
— Corrects satellite position and clock errors

 Antenna corrections

— Antenna phase center offsets for
GPS/GLONASS satellites and for many GPS
antennas




Performance examples of GPS PPP timing solutions

GPS PPP SAMPLE DATA




The Method

PPP processing produces several output files

One of the files contains the position calculation at
each epoch as well as the clock difference from
the paper IGS clock

Take two of these files and difference the clock
differences from IGS, and the IGS cancels and
you are left with a time difference between two
GPS recelivers

Do this for GPS receivers at different locations,
and you can effectively transfer time between
remote locations without requiring any base
stations!




Common Antenna, Common Clock
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Common Antenna/Clock, Modern Receivers

GPS PPP -- Common Antenna, Common Clock (novl-spx2)
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Common Antenna/Clock, Modern Recelvers,

Multiday Processing
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Short Baseline
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Short Baseline, Zoomed In

GPS PPP -- Short Baseline (usn3-usno)

1.5

1.0

0.5
E
:
0.0
Day boundary jumps
-0.5 . .
due to different daily
estimations of the
.| | carrier ambiguities!

55800 55801 55802 55803 55804 55805 55806 55807 55808 55809 55810
MJD

bxp - Version: 6.4




Short Baseline, Multi-Day Processing

GPS PPP -- Short Baseline, Multi-day Processing (usn3-usno)
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nhanoseconds

Short Baseline, Both Methods

GPS PPP -- Short Paseline (usn3-usno)
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Long Baseline, DC - Colorado

GPS PPP -- Long Baseline DC->Colorado (usn3-amc2)
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MINOS GPS PPP DATA




MINOS PPP Overview
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MINOS PPP Changes Over Time
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MINOS PPP Changes Over Time
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MINOS PPP Changes Over Time

MINOS GPS PPP Differences, Common Clock {Far)
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MINOS PPP Near-Far

MINOS GPS PPP Differences
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MINOS PPP Common-Clock

Common Clock, Far Receivers (GPS3-GPS4)
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MINOS PPP Time Transfer

« Use traveling receivers to determine
systematic differences between the two sites

* Form a calibration value from these
systematic differences

 Determine the time difference of the clocks at
each site at any given time

« Can use two Time Transfer methods to verify
calibration: GPS PPP and Two-Way Satellite
~ Time Transfer




MINOS PPP Time Transfer

Traveling Receivers

* An entire GPS system consisting of antenna,
cables, and receiver

» Everything stays the same between sites except
the antenna location and the distribution amplifiers
used

 Allows for very precise common-clock comparison
to the stationary receivers at each site

« A relative site offset can be determined by
comparing the site receivers against the same
traveling receiver as it visits each site

e MINOS has two
,” P "t
g %7 A/




GPS PPP Calibration Worksheet

Minos GPS Time Transfer
(PPP)

°® A I - f Site Name Character Role
POIOgIES TOI' v ™ ™ neco

Sudan F Far Detector (FD)
th S m I I t Xt I FermiLab N Near Detector (ND)
- Receiver GPS1 GPS2 GPS3 GPS4 GPS5 GPS6 GPS7 GPS8
Site S N F F Trav Trav S N
 GPS Traveling
GPS3
GPS2 (N) (F) GPS5 (F) GPS5 (N) GPS6 (F) GPS6 (N)

S Ste m S a re e Tick-to-tick 27.8 1453 14.31 27.42 14.27 27.39
y g *Tick-to-tick added to RCVR-IGS datasets
Avg GPS5-
to 4 5 S I GPS2 36.62
- Avg GPS5-

GPS3 -27.83
Avg GPS6-
GPS2 41.48
Avg GPS6-
GPS3 -23.42
Double Difference GPS2-GPS3 (via
Double Difference GPS2-GPS3 (via GPS5) GPS6)
-64.45 -64.9

Average Double Difference: -64.675

Calibration Value to be summed to GPS2-GPS3 Data:
64.675

Final
Values: MJD Value
56036.85 3234.07




Calibration Works!
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Calibration Works?

| |
Double Difference Fermi-SudanMine TWSTT-PPP using USN3 as a flywheel
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Conclusions

= *If the calibration works!

Time between Near and Far changes by less
than 1 ns for each 300s point in the PPP
solution (1-sigma:. 0.248 ns)

A Cs atomic clock has 2-sigma instabllity
around 100 ps at 300 s

Two separate GPS traveling systems had
calibrations only 450 ps apart

Multi-day PPP solutions minimize day-
boundary discontinuities

Relative timing accuracy better than 1 ns*




End of Presentation

THANK'Y




