Straightness evaluation for the 206-m-long part of the KEK electron/positron linac using inclinometers

Tatsuya Kume ${ }^{1}$, Eiki Okuyama², Masanori Satoh ${ }^{1}$, Tsuyoshi Suwada 1 and Kazuro Furukawa ${ }^{1}$

1: High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki, Japan 305-0801,
2: Faculty of Engineering and Resource Science, Akita University, 1-1 Tegata gakuen-machi, Akita, 010-8502.

Target

Evaluate aligning straightness of linear particle accelerators (Linacs) for distance of several 100 m with accuracy of better than 1 mm

Contents

1. Introduction

- Straightness evaluation using an inclinometer

2. Demonstration

- 71-m-long (single accelerator sector) straightness evaluation with a straight bar
- 206-m-long (multi accelerator sectors) straightness evaluation with a straight bar and offset bars

3. Conclusion

Straightness evaluation using an inclinometer

Not affected by transferring locus (= error in the scanning straightness)
\Rightarrow Advantageous for long distance evaluation

Straightness:
$f\left(x_{n}\right)=h_{1}+s \times \sum_{i=1}^{n-1} \theta\left(x_{i}\right)$
h_{1} : Arbitrary straightness of the start point,
s_{i} : Sampling interval, ($s_{\mathrm{i}}=s$) $\theta\left(x_{\mathrm{i}}\right)$: Measured tangential angle,
n : Number of measurements

Error propagated to the straightness: $\sigma_{f}=\sqrt{\sigma_{s}{ }^{2} \cdot \sum_{i=1}^{n}\left\{\theta\left(x_{i}\right)\right\}^{2}+\sigma_{\theta}{ }^{2} \cdot \sum_{i=1}^{n} s_{i}{ }^{2}}$
σ_{s} : Error in the sampling interval: s_{i},
σ_{θ} : Error in the measured tangential angle,
l : Measurement distance, $(l=s \times n)$
$\approx \sqrt{s \cdot l} \cdot \sigma_{\theta} \quad\left(\right.$ In case $\theta\left(x_{\mathrm{i}}\right) \fallingdotseq 0$
\Rightarrow quasi-straight object)

Application to the $\underset{9.6 \mathrm{~m} \text { (unit tength) }}{ } \mathrm{KK} \mathrm{e}^{-} / \mathrm{e}^{+}$Linac

Aligning straightness to be evaluated

Floor of the accelerator tunnel

Gravity referenced precise electric inclinometer (Talyvel 4)

Angle detector
-Range: $\pm 3 \mathrm{mrad}(\pm 600 \mathrm{sec})$, -Resolution: $0.5 \mu \mathrm{rad}$ (0.1 sec),
-Accuracy: $0.2 \mathrm{sec} \pm 3 \%$-definition

Controller
【 Acknowledgement】
Authors thank Yukinori Kobayashi and members of the Accelerator Division 7 in Accelerator Laboratory in KEK and Masahiro Katoh of Institute of Molecular Science for providing us Talyvel 4.

Straightness evaluation for the KEK e-/e+ Linac using an inclinometer and a straight bar

Straight bar made of 3-mm-tick Al rectangular pipe (1990~2306-mm-long, $50-\mathrm{mm}$-wide, and $25-\mathrm{mm}$-high)

Cross-section of the straight bar

Foot made of 2-mm-tick glass plate (=optical parallel- $\lambda=633 \mathrm{~nm}$) with area of $50 \times 50 \mathrm{~mm}$

Reversal measurement

Eliminate offset of the angle measurement system
(= Inclinometer + Straight bar + Pair of contact feet)

Before

Offset of the system: θ_{0} caused by Offset of the inclinometer, Shape error of the bar
(including the height difference between the pair of the contact feet),
Deformation of the bar

can be eliminated by

$$
\theta_{r}=\left(\theta_{m}-\theta_{n}\right) / 2
$$

θ_{r} : Angle to be measured,
θ_{0} :Offset of the system,
$\theta_{\mathrm{m}}=\theta_{\mathrm{r}}+\theta_{0}$:Measurement before reverse,
$\theta_{\mathrm{n}}=-\theta_{\mathrm{r}}+\theta_{0}$:Measurement after reverse

Effect of the reversal measurements

The offset angles: θ_{0} is comparable to the slope angles: θ_{r}.

Offsets must be eliminated

Standard deviations of the
slope angles
 are smaller than those of the offset angles

Fluctuations of the offset angles (\Rightarrow drift) are also reduced.

Evaluation results for the 71-m-long part of the sector C

Comparison between the other methods,
"Laser" stands for the results by our laser alignment system

Histogram of the standard deviations for each position
-Agreed with the two results within sub-mm.

- Straightness can be evaluated with standard deviations of $26 \mu \mathrm{~m}$-avg, and $49 \mu \mathrm{~m}$-max.
*The earth curvature was compensated considering the earth as a sphere with a radius of 6371 km for the result by the inclinometer.

Error estimation

- $0.6 \mathrm{~mm}-2 \sigma$ for $500 \mathrm{~m} \Rightarrow$ Can be adopted for evaluating the KEK linac

Histogram of the standard deviations for the derived slope angles

Error propagated to the straightness:

$$
\sigma_{f}=\sqrt{s \cdot l} \cdot \sigma_{\theta}
$$

$l:$ Measurement distance,
s : Sampling interval $\Rightarrow 1.9 \mathrm{~m}-\mathrm{avg}$, σ_{θ} : Error in the obtained angle
$\Rightarrow 9.2 \mu \mathrm{rad}-\mathrm{avg}$

Error propagated to the straightness -experimental and estimated value.
-The experimental value agrees well with the estimated one.

The estimated value is reliable.

Offset bars for avoiding obstacles on the measuring pass

Evaluation distance is
Obstacles

Obstacles the measuring path and $\square \square$ avoid obstacles

Reversal measurement

considering slope angles of the offset bars

Offset of the system caused by Offsets of the inclinometers, Shape errors of the bars, Deformations and slopes of the bars

can be eliminated by

$$
\begin{aligned}
\theta_{r} & =\frac{\theta_{m c}-\theta_{n c}}{2} \\
& -\frac{d\left\{\left(\theta_{m b}-\theta_{m a}\right)+\left(\theta_{n a}-\theta_{n b}\right)\right\}}{2 s}
\end{aligned}
$$

θ_{t} : Slope angle (angle to be measured),
$\theta_{\mathrm{ma}}, \theta_{\mathrm{mb}}, \theta_{\mathrm{mc}}$: Measurements before reverse, $\theta_{\text {na }}, \theta_{\mathrm{nb}}, \theta_{\mathrm{nc}}$: Measurement after reverse, d : Length of the offset bars,
s : Length of the straight bar

Straightness evaluation for the KEK e-/e+ Linac using a pair of offset bars

Deviation of the derived slope angle and Error estimation

- $0.9 \mathrm{~mm}-2 \sigma$ for $500 \mathrm{~m} \Rightarrow$ Can be adopted for evaluating the KEK linac

Error propagated to the straightness:

$$
\sigma_{f}=\sqrt{s \cdot l} \cdot \sigma_{\theta}
$$

l: Measurement distance,
s : Sampling interval $\Rightarrow 1.8 \mathrm{~m}$-avg,
σ_{θ} : Error in the obtained angle
$\Rightarrow 15 \mu \mathrm{rad}$ for single measurement point

Error propagated to the straightness -estimated value.

Straightness evaluation for the 206-m-long part of the KEK e-/e ${ }^{+}$linac

- Similar trend.
-Partly agreed within sub-mm range.

Fairly reliable with each other
*The earth curvature was compensated considering the earth as a sphere with a radius of 6371 km .

Conclusion

1. Reversal measurement is effective for eliminating offset and reducing drift of the angle measurement system.
2. Obstacles on the measuring path can be avoided by pair of offset bars. It can extend evaluation distance of the system.
3. By considering slope angles of the offset bars, affects of the shape errors, deformations, and slopes of the offset bars can be eliminated.
4. 206-m-long straightness evaluation of the KEK e^{-} / e^{+}Linac was demonstrated with standard deviation of $15 \mu \mathrm{rad}$ for the derived slope angles.
5. It is applicable for evaluating the whole $500-\mathrm{m}$-long KEK e-/e+ Linac with 2σ of better than 1 mm .

Issues

1. Demonstrate longer (500 m or longer) straightness measurement
2. Estimate/evaluate the system's performance precisely for longer measurement distance.
3. Consider/realize horizontal straightness evaluation method (Straightness in the horizontal plane)

Straightness measurement using inclinometers adopted for the KEK e-/e ${ }^{+}$linac

69-m-long part of the Sector B, (Aug. 25-28, 2009)

71-m-long part of the Sector C, (Mar. 29-31, 2010)

206-m-long part for the longer straight section (Mar. 26-8, 2012)

