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We need.......

1) Distance .....This is the geodesist’s job.....see talk at 10:15 this session

2) Something to measure .... A physical event...... OK, this is the neutrino
beam

3) The time between departure and arrival....this involves 2 separate clocks in
two different locations....which implies we must have synchronization
between them....how hard can this be, ie. go 72 way between Fermi and
Soudan with two clocks, set them to the same time and carry them slowly
to their final destinations right.....(hint this doesn’t work)......forget General
& Special Relativistic effects, clocks have (at best) white frequency
noise...time is Jwdt so that the frequency noise averages down, but the
time uncertainty grows like 2 even very good Cs clocks are several
ns/day
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The experiment

120 GeV/c protons strike graphite target
Magnetic horns focus charged mesons (pions and kaons)
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——__ MAIN INJECTOR
\,;_».

kaCVCLER \x
\\\\?‘\“\

TEVATRON

/

Decay Pipe

~ANTIPROTON
] SOURCE

I=677m r=Im

_’_,Z BOOSTER spill every2.06 seconds
5‘1':-7{/ IC LINAC -Hel3 protons' 10 usec spill haderond
'/"" COCKCROFT-WALTON - 3.8¢20 protons/vear ,,;1{,n:[g;;:g :T_:::‘:m
e . "
'_,../z/f L = 1.04 km to Near, 735 kn to Far Detector
///’ SWITCHYARD
Target Service ] MINOS To Soudan
Building | Service ~\
~—Main Injector _| Building——— |
b ~1]MI60 N | )
e B = it b = -
e ’J : 1
7_1-—:*{;::—_'.—_:::;:: e ‘
Tunnel i fwﬁ‘—:'—" =T L«
Target Hall —/ Beam Absorber —// Minos Hall |

Minos Near /
Detector

0 64 128 256
METERS

Muon Detectors

Fermilab

Soudan Mine
Underground Lab



Beam structure

5 empty buckets ~94ns
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First-time ns-requirement outside the T&F community!



The proton

FERMILAB'S ACCELERATOR CHAIN
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Synchronization setup
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Synchronization: how well should we do?

Given the scrutiny that a possible superluminal result would trigger, it is important to
consider the confidence of each calibration, not only its accuracy/stability

We should then think 3-c error bars (99.5% confidence)

From the graph of a “bucket” shown previously, we understand the
need for accuracies (and stabilities) on the order of few ns

Three ways to provide synchronization between clocks at remote locations:
+ GPS link (C/A, carrier phase)
+ Two-Way Satellite Time and Frequency Transfer (TWSTFT)
+  Clock trip

GPS : ~ns/year

TWSTFT : ~ns/year (68% confidence)
Clock Trip ~ ns or so

<~

few ns/year (99.5% confidence)

Independent
calibration accuracies

The noise types aren’t Gaussian so sigma isn’t a good measure



The locations
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C/A: for each receiver

LOCAL
TIME REFERENCE
PLANE
| PDA
= PRNtime, + ( +INTDLY) = RCVRtime
antenna l

receiver

RCVtime = REFplane + PPSin (INTDLY)
PPSout

- + ) — INTDLY = PRNtime, — REFplane TIC

GPSH




C/A: Common View

SEPARATE LOCATIONS

1,2 1,2

+

), — INTDLY, = PRNt, - REFplane,

), — INTDLY, = PRNt_ - REFplane,

1,— AINTDLY, , = REFplaneg - REFplane,

REFplane,

PDA

|
1]
\ GPS1

GPS2

REFplaneg

PDA

It measures the difference between the clocks at the two locations |

Local
clock



C/A: Common View

COMMON CLOCK

( - + ), — INTDLY, = PRNt, - REFplane,
( - + ), — INTDLY, = PRNt, - REFplane,
12~ 12t 12 = AINTDLYL2
REFplane

The local clock “drops out” so the time deviation
of the time difference establishes a lower limit i PRA

for the stability of the GPS link

If one of the two receivers is a travelling
receivers, the time difference allows for a
differential calibration of receivers



Timed

REFplaneg,

PDA

GPS6

L

L

GPS2

GPS8

ND

(GPS6N56002)
GPS2 ¢

(GPS6F56034)
* GPS4

ifference between sites

Date MID | DoY MI60 (Rb) D (Cs) FD NIST
travel  GPS1 GPS7 GPS2 GPs8| |travel |GPs3 GPsa| |GPS5
13-Mar-12| 55999 | 73 PP PP | p P
14-Mar-12 | 56000 | 74 PP P | p P | p
15Mar-12 | 56001 | 75 PP P | p P | p
16-Mar-12 | 56002 | 76 PP 2 P | P P | P
17-Mar-12 | 56003 | 77 PP 2 P | P P | P
18Mar-12 | 56004 | 78 P | P 2 | p | P P | p
19-Mar-12 | 56005 | 79 PP 2 [P | P P | P
20-Mar-12| 56006 | 80 PP 2p | P | P P | P
21-Mar-12 | 56007 | 81 P | P | P 2p | P | P P | P
22-Mar-12| 56008 | 82 RIEEE P | P | P
23-Mar-12 | 56000 | 83 P | p | P P | P P | p
24-Mar-12| 56010 | 84 P | P | P PP P | P
25-Mar-12| 56011 | 85 P | P | P P | P | P

Date MID | DOY MI60 (Rb) ND (Cs) FD NIST
travel  GPS1 GPS7| |travel |GPS2 GPS8| |travel |GPS3 GPS4| |GPS5

14-Apr-12 | 56031 105 P P P 2]

15-Apr-12 | 56032 106 P P P P P P
16-Apr-12 | 56033 107 P P P P [ [
17-Apr-12 | 56034 108 P P P P 2P P P
18-Apr-12 | 56035 109 P P P P 2P P P
19-Apr-12 | 56036 110 TWSTT P P P P 2P P P
20-Apr-12 | 56037 111 P P P P 2P P 2]
21-Apr-12 | 56038 112 P | P P | P 2P P | P
22-Apr-12 | 56039 | 113 Pl r PP 20 | p | P
23-Apr-12 | 56040 | 114 Pl p P | P 20 | p | P
24-Apr-12 | 56041 | 115 PP PP P | P
25-Apr-12 | 56042 116 P P P P [ P
26-Apr-12 | 56043 117 P P P P P P
27-Apr-12 | 56044 118 P P P P 2] 2]

REFplaneg - REFplane,

(data— CABDLY + REFDLY), - (data — CABDLY + REFDLY), — (INTDLY, - INTDLY,)




RCVRs schedule

Calibration with travelling receivers

MI60 (Rb) ND (Cs) )
travel GPS1 GPS7| |travel GPS2 GPS8 travel |GPS3 GPS4

Date | MID | DOV

6Feb12 | 5593 | 37
7Feb12 | 55964 | 38
8feb12 | 5595 | 39
9Feb12 | 5596 | 40
10Feb-12 | 5597 | a1
11Feb12 | 55968 | 42
12Feb12| 55969 | 43

It is a differential calibration

19Feb-12| 55976 | 50
20Feb12| 55977 | 51
21-Feb-12| 55978 | 52
2-Feb-12| 55979 | 53
23-Feb-12 | 55980

s It doesn’t determine INTDLY for a receiver

It determines AINTDLY,

1p

; for a pair of receivers

’

B(3(R(R|R|D

1p

Absolute calibrations generally require a GPS
simulator and an anechoic chamber

BBRZRREBB 2SI H RN B

(GPS6N56002) (GPS6F56034)
GPS2 @@ GPS4

10| TwsTr




Allan deviation

Calculation of time difference

5 (GPS6N56002) (GPS6F56034) 12~ 12+ 1o~ AINTDLY, , = REFplaneg - REFplane,
GPS2 GPS4
FD-ND whRi-bRgsrefmoved |NTDLY2— |NTDLY4

380 0.23 ns

i

o The clocks at the two locations
a0 27.745077 ms are two HP5071 (Cs)

The stability of the time 73384700 ms 3.215 s

the stability of standard

difference is consistent with gm
performance HP5071 Cs clocks ';

standard performance

Time steps were manually
introduced to bring the two
clocks closer in time
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MJD 56035-56053 rel. freq. offset = 1.499e-13
+—high-performace Cs HP5071 (measured)
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Tools for evaluating the uncertainty of
the GPS link

Common-clock, short-baseline measurement
Lower limit for the stability of the receivers. The iono/troposphere effects cancel as well
as other effects of the shared local environments (multipath, temperature, etc.)

Differential calibration of INTDLY with travelling receiver
Common-clock, short-baseline measurement, it determines the accuracy of the link in
the short term.

Calibrated double-difference between remote sites

The mean is a (optimistic) measure of the accuracy of the link in the long term. It uses only
one calibration, so it doesn’t include the calibration repeatability, and it cannot show all
the “common-mode effects” intrinsic in the GPS link (multipath, code interference, etc.).

The time deviation sets a lower limit for the stability of the link. The iono/troposphere
effects still cancel, but the other local effects do so to a lesser extent than in the common-
clock measurement.

Repeated differential calibrations with travelling receivers

It determines the accuracy of the link on in the long(er) term by showing the long-term
behavior (slow variations) of the differential calibrations.

Comparison with independent synchronization systems (TWSTFT, TW in fiber, clock trips)
Accuracy: the means may or may not be statistically consistent...



Common-clock, short-baseline measurement
(RCVR stability, lower limit)
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[ns]

Differential calibration of the receivers

(accuracy, lower limit)
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Time difference [ns]

Calibrated double-difference between sites

(stability and accuracy, lower limit)
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Time deviation [s]
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Dbl diff (a)-(g) PPP solution 55997-56008
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-0.5

[ns]

Repeated differential calibrations

(accuracy in the longer term)

Deterministic behavior (i.e.
annual term) also recognizable in
the calibrated double difference

INTDLY, - INTDLYj
+ int3-int6 (FD) }
® int4-int6 (FD) }
@ int1-int5 (MI60) U
int2-int6 (ND) ; The “trend” can be use to correct
the data
-1
-1.5
The scatter of calibration data is
2 stochastic
U
2.5 The uncertainty of the
23950 5;‘}:;0 >6050 >6100 calibrations is increased until all
results are statistically consistent

55900



Comparison

with independent systems

(stability and accuracy)

USNO TWSTFT

Fermilab-SoudanMine Cesium Clock Differences
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3300
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.,».-*”w“v'":
3220
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Modified Julian Date

e Neasured with GPS PPP == Measured with Direct TWSTT

Graph courtesy of D. Matsakis, USNO

Measured with TWSTT to USNO (indirect)
bxp - Version: 6.2
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Uncertainty estimates for GPS link

Stability Accuracy
Common clock < 200ps
Differential calibration 200ps
Calibrated double-difference < 300ps < 400ps
Repeated calibration ~500ps
Comparison with TWSTFT ~1 ns




NIST — Clock Trip

Backward from traditional clock trips — here we have a “good” traveling clock and
not so good fixed clocks at the ends.

Analysis suggests this is really bad.....so we probably have to get 3 good clocks for
the calibration, one in Fermilab, one in Soudan and one flying between.

Accuracy of calibration is given by the clock stability at one round trip time
Soudan has Airport (Tower Muni 12D) about 10min drive, Fermilab (DuPage
County KDPA) is 25 min. A/C 250knts ~ 2hours. So we can get ~ 6hour loop —

should give well less than 2ns calibration accuracy.

Must make special/general relativistic corrections quite well to achieve this — FUN!



Conclusions

The uncertainty seems to be (so far) at the ns level compatible with the
width of a “bucket” of particles, but we clearly need more data.

“So far, so good.....,” said the man falling from the Empire State Building
We are planning to continue into 2013 the synchronization with periodic
calibrations with travelling receivers, totaling one year of differential
calibrations .

We are also planning a clock trip between MINOS sites.

The beam at Fermilab is presently shut-down for a scheduled upgrade of

the facilities. The measurements on neutrinos will resume in the summer
of 2013.
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Log file
(Tick-to-tick, tick-to-phase, RF power, status)

Delay line
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Uncertainty of the time difference (1)
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Uncertaint(ie)s

Total uncertainty = V(Type A)? + (Type B)?2 Total uncertainty = V(Type A)? + (Type B)?2

0.297 ns (@16min) 0.376 ns (@16min)



Calibration (again)
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Double-difference between remote sites
(Stability)
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