

Laser Scan Analysis of NOvA Far Detector Layer Surfaces

Brian Mercurio
University of South Carolina, Columbia
12th International Workshop on Accelerator Alignment
2012/09/14

1

Outline

- Purpose of the laser scans of the layer surface.
- Coordinate systems.
- Algorithm of a computer program that analyzes the scanner output.
- Results from a recent scan.

Why We Scan the Surface

- NOVA far detector
 - 28 or 29 blocks.
 - 32 layers per block.
 - 12 modules per layer.
 - 32 detector cells per module.
- When a new layer is assembled, we need to check
 - How well the modules are lined up.
 - How flat the modules are.
- We want to know the positions of the cells for Monte Carlo programs.

Data Reduction and Quick Analysis

- Some points measured by the laser scanner should not be used to determine the smoothness or flatness of a layer.
 - Inside a groove (scallop).
 - Outside the plane.
- The points shown in dark blue are the ones we want to keep.
- A C++ program removes the unwanted points and preforms a quick analysis of the surface shape before the next layer is assembled.

But First, Coordinate Systems

photographs by Ron Williams

- In NOVA, "north" means a horizontal projection of the beam direction, and points close to northwest in geographic coordinates.
- The **scanner** coordinates are shown in blue.
 - Origin is at the scanner.
 - Z axis points down.
 - Y axis pointed west. X axis pointed upstream (south).
 - X axis and Y axis change whenever the scanner is reinstalled after maintenance.

Coordinate Systems

- Monte Carlo coordinates
 - Origin is near the upstream side of the detector.
 - Z axis goes through the center of each unshifted vertical layer and points downstream (north).
 - Y axis points up.
 - X axis points west.

Coordinate Systems

• **Block** coordinates, shown in black

photograph by Ron Williams

- Origin is at the surface of the pivoter, under the expected center of Layer 31.
- Z axis points down.
- Y axis is parallel to the vertical cells and points north.
- X axis points west.
- Three targets determine the conversion from scanner to block coordinates.
- After the block has been pivoted, the x and y values in block coordinates are the same as in Monte Carlo coordinates.

Points Outside the Plane

photograph by Bill Miller

- Targets are placed at known positions relative to the edges of the plane.
 - In the groove between the first and second or last and second-to-last cells.
 - Pressed against the end cap.
- Use the maximum and minimum values of X,Y, and Z of the targets to define a volume that contains the white part of the surface.
- Remove all points outside that volume.

Thinning Near the Pole

- Measurements are evenly spaced in polar coordinates, thus very dense directly below the scanner.
- Keep 0 points within 5 mm of the pole.
- Keep I/100 of the remaining points within 3 cm of the pole.
- Keep 1/25 of the remaining points within 10 cm of the pole.

Spike Removal

- High intensity reflections make the surface appear to have spikes where it is close to the scanner and perpendicular to the scan direction.
- Divide the plane into 2400 sections of size \sim 25 cm $\times \sim$ 37 cm.
- For each section,
 - 1. Calculate the mean value of Z for the measured points in each section.
 - 2. Remove all points with Z value > 9 mm away from the mean.
 - 3. Recalculate the mean value of Z.
 - 4. Remove all points 6 mm away from the mean.
 - 5. Recalculate the mean value of Z.
- All remaining points are written to a text file in block coordinates.

Groove Removal

- Divide each section into bins 1.5 mm along X (for vertical planes) or Y (for horizontal planes).
- 2. Calculate the mean value of Z inside each bin.
- 3. If (mean Z of bin) (mean Z of section) > I mm, that bin is listed as inside a groove between cells.
- 4. Write the position of a bin if it's in a groove and lower than the four bins closest to it.
- 5. Remove all points in that section that are less than 8 mm from any bin that's inside a groove.

NDOS Block 5 Layer 28

- From the NOVA prototype detector.
- Red = removed points; blue = remaining points; white = no data.
- Now only a smooth surface remains.

Z Position of Different Cells

- I. Divide the surface into a new set of sections 2.54 cm parallel to the cells and 15 m perpendicular to the cells.
- 2. Calculate the mean value of Z for each border cell within each section.
- 3. Plot Z as a function of Y (for vertical planes) or X (for horizontal planes) for cells at the module borders.

Z Position of Different Cells

- Unable to count cells where many points had been removed.
- We prefer $|\Delta Z| < I$ mm at the module boundaries.

Far Detector Construction

- NOVA began to glue Far Detector modules to each other on August 1.
- Block 0 was assembled slowly so we could make sure every step worked.

Far Detector Block 0 Layer 14

- $\Delta Z = 28$ mm along the module border.
 - Table surface will be remeasured after Block 0 is finished.
- $\Delta Z < I$ mm across the module border.

• Similar result to the 32nd cell vs 33rd cell border.

Far Detector Block 0 Layer 14

- Similar result to the 32nd cell vs 33rd cell border.
- We'll try to find the reason for that 2 mm jump in Z near the center.

Summary

- A laser scanner measures the upstream surface of every plane of the NOVA Far Detector.
- A computer program has been developed to reduce the data and make a quick estimate of the surface shape.
- It showed no evidence of major problems during the construction of Block
 0.

Point Weighting

- Some parts of the scan have a much larger concentration of points inside the grooves than on the planar surface. This can put the mean value of Z too deep inside the grooves.
- I. Divide the section into $\sim I$ cm bins along X.
- 2. Count the number of points inside each bin.
- 3. A point's weight = I / (# points in bin).
- 4. Then calculate the mean value of Z in the section.