Laser Scan Analysis of NOvA Far Detector Layer Surfaces

Brian Mercurio
University of South Carolina, Columbia
12th International Workshop on Accelerator Alignment 2012/09/14

Outline

- Purpose of the laser scans of the layer surface.
- Coordinate systems.
- Algorithm of a computer program that analyzes the scanner output.
- Results from a recent scan.

Why We Scan the Surface

- NOvA far detector

- 28 or 29 blocks.
- 32 layers per block.
- 12 modules per layer.
- 32 detector cells per module.
- When a new layer is assembled, we need to check
- How well the modules are lined up.
- How flat the modules are.
- We want to know the positions of the cells for Monte Carlo programs.

Data Reduction and Quick Analysis

- Some points measured by the laser scanner should not be used to determine the smoothness or flatness of a layer.
- Inside a groove (scallop).
- Outside the plane.
- The points shown in dark blue are the ones we want to keep.
- A C++ program removes the unwanted points and preforms a quick analysis of the surface shape before the next layer is assembled.

But First, Coordinate Systems

photographs by Ron Williams

- In NOvA, "north" means a horizontal projection of the beam direction, and points close to northwest in geographic coordinates.
- The scanner coordinates are shown in blue.
- Origin is at the scanner.
- Z axis points down.
- Y axis pointed west. X axis pointed upstream (south).
- X axis and Y axis change whenever the scanner is reinstalled
 after maintenance.

Coordinate Systems

- Monte Carlo coordinates
- Origin is near the upstream side of the detector.
- $\quad Z$ axis goes through the center of each unshifted vertical layer and points downstream (north).
- $\quad \mathrm{Y}$ axis points up.
- X axis points west.

Coordinate Systems

- Block coordinates, shown in black

photograph by Ron Williams
- Origin is at the surface of the pivoter, under the expected center of Layer 31.
- Z axis points down.
- Y axis is parallel to the vertical cells and points north.
- X axis points west.
- Three targets determine the conversion from scanner to block coordinates.
- After the block has been pivoted, the x and y values in block coordinates are the same as in Monte Carlo coordinates.

Points Outside the Plane

photograph by Bill Miller

- Targets are placed at known positions relative to the edges of the plane.
- In the groove between the first and second or last and second-to-last cells.
- Pressed against the end cap.
- Use the maximum and minimum values of X, Y, and Z of the targets to define a volume that contains the white part of the surface.
- Remove all points outside that volume.

Thinning Near the Pole

- Measurements are evenly spaced in polar coordinates, thus very dense directly below the scanner.
- Keep 0 points within 5 mm of the pole.
- Keep $\mathrm{I} / \mathrm{I} 00$ of the remaining points within 3 cm of the pole.
- Keep $\mathrm{I} / 25$ of the remaining points within 10 cm of the pole.

Spike Removal

- High intensity reflections make the surface appear to have spikes where it is close to the scanner and perpendicular to the scan direction.
- Divide the plane into 2400 sections of size $\sim 25 \mathrm{~cm} \times \sim 37 \mathrm{~cm}$.
- For each section,
I. Calculate the mean value of Z for the measured points in each section.

2. Remove all points with Z value $>9 \mathrm{~mm}$ away from the mean.
3. Recalculate the mean value of Z.
4. Remove all points 6 mm away from the mean.
5. Recalculate the mean value of Z.

- All remaining points are written to a text file in block coordinates.

Groove Removal

out of groove
in groove
center of groove

I. Divide each section into bins 1.5 mm along X (for vertical planes) or Y (for horizontal planes).
2. Calculate the mean value of Z inside each bin.
3. If (mean Z of bin) - (mean Z of section) > I mm, that bin is listed as inside a groove between cells.
4. Write the position of a bin if it's in a groove and lower than the four bins closest to it.
5. Remove all points in that section that are less than 8 mm from any bin that's inside a groove.

NDOS Block 5 Layer 28

- From the NOvA prototype detector.
- Red $=$ removed points; blue $=$ remaining points; white $=$ no data.
- Now only a smooth surface remains.

Z Position of Different Cells

I. Divide the surface into a new set of sections 2.54 cm parallel to the cells and 15 m perpendicular to the cells.
2. Calculate the mean value of Z for each border cell within each section.
3. Plot Z as a function of Y (for vertical planes) or X (for horizontal planes) for cells at the module borders.

Z Position of Different Cells

- Unable to count cells where many points had been removed.
- We prefer $|\Delta Z|<1 \mathrm{~mm}$ at the module boundaries.

Far Detector Construction

- NOvA began to glue Far Detector modules to each other on August I.
- Block 0 was assembled slowly so we could make sure every step worked.

Far Detector Block 0 Layer 14

- $\Delta Z=28 \mathrm{~mm}$ along the module border.
- Table surface will be remeasured after Block 0 is finished.
- $\Delta Z<I \mathrm{~mm}$ across the module border.

Far Detector Block 0 Layer 14

- Similar result to the 32 nd cell vs 33 rd cell border.

Far Detector Block 0 Layer 14

- Similar result to the 32 nd cell vs 33 rd cell border.
- We'll try to find the reason for that 2 mm jump in Z near the center.

Summary

- A laser scanner measures the upstream surface of every plane of the NOvA Far Detector.
- A computer program has been developed to reduce the data and make a quick estimate of the surface shape.
- It showed no evidence of major problems during the construction of Block 0.

Point Weighting

- Some parts of the scan have a much larger concentration of points inside the grooves than on the planar surface. This can put the mean value of Z too deep inside the grooves.
I. Divide the section into $\sim 1 \mathrm{~cm}$ bins along X.

2. Count the number of points inside each bin.
3. A point's weight $=I /$ (\# points in bin).
4. Then calculate the mean value of Z in the section.
