

Snowmass pMSSM Grand Scan

Jennet Dickinson Snowmass pMSSM scan meeting January 13, 2021

Recap: scan setup

- The goal is to perform a *grand scan* that populates all regions of parameter space relevant for Snowmass studies
- The scan will need to cover a large region of parameter space. Goal: *retain high granularity* at low values of pMSSM mass parameters
- This talk outlines some of the technical options for how to achieve this

First: Proposed ranges

 For 100 TeV pp collider, expect sensitivity up to ~20 TeV masses. Assume 50 TeV is sufficient for decoupling

Parameter	Range	Stepping
tan β	[1, 60]	
M _A	[0, 25] TeV	
lμl	[0, 25] TeV	
IM ₁ I	[0, 25] TeV	
IM ₂ I	[0, 25] TeV	
M ₃	[0, 50] TeV	
m _L 123~, m _e 123~	[0, 25] TeV	
m _Q 12~, m _u 12~, m _d 12~	[0, 50] TeV	
m _Q 3~, m _u 3~, m _d 3~	[0, 50] TeV	
$ A_t , A_b , A_\tau $	[0, 7]	

Parameters restricted to values ≥ 0

Parameter	Range	Stepping
tan β	[1, 60]	
M _A	[0, 25] TeV	
M_3	[0, 50] TeV	
m _L 123~, m _e 123~	[0, 25] TeV	
m _Q 12~, m _u 12~, m _d 12~	[0, 50] TeV	
m _Q 3~, m _u 3~, m _d 3~	[0, 50] TeV	

• Next few slides: review stepping options

Most basic: linear stepping, fixed width gaussian

Accept if x_i ' is in the allowed range and $L(x_i)$ satisfies criteria

‡ Fermilab

 X_{i+1}

- Use a 1D parameter space with 0 < x < 25
- Use a flat likelihood for simplicity
- Run McMC with 1,000,000 iterations
- Do this 3 times with random starting points

- **3.1**, **24.6**, **0.1**

Log stepping, fixed width gaussian

Accept if x_i ' is in the allowed range and $L(x_i)$ satisfies criteria

Presenter I Presentation Title or Meeting Title

7 Fermilab

7

1/13/21

- Use a 1D parameter space with 0 < x < 25
- Use a flat likelihood for simplicity
- Run McMC with 1,000,000 iterations
- Do this 3 times with random starting points

- **3.1**, **24.6**, **0.1**

Log stepping, fixed width gaussian, x > 0

Higher fraction of points near zero are sampled

Parameters restricted to values ≥ 0

Parameter	Range	Stepping
tan β	[1, 60]	Propose: log
M _A	[0, 25] TeV	Propose: log
M ₃	[0, 50] TeV	Propose: log
m _L 123~, m _e 123~	[0, 25] TeV	Propose: log
m _Q 12~, m _u 12~, m _d 12~	[0, 50] TeV	Propose: log
m _Q 3~, m _u 3~, m _d 3~	[0, 50] TeV	Propose: log

- Will need to tune:
 - Width of the gaussian
 - Base of the logarithm

Parameters that can take on negative values

Parameter	Range	Stepping
Iμl	[0, 25] TeV	
IM ₁ I	[0, 25] TeV	
$ M_2 $	[0, 25] TeV	
$ A_t , A_b , A_\tau $	[0, 7]	

• Next slides: review stepping options

Most basic: linear stepping, fixed width gaussian

Accept if x_i ' is in the allowed range and $L(x_i)$ satisfies criteria

11 1/13/21 Presenter | Presentation Title or Meeting Title

 X_{i+1}

- Use a 1D parameter space with -25 < x < 25
- Use a flat likelihood for simplicity
- Run McMC with 1,000,000 iterations
- Do this 5 times with random starting points

- **5.1**, **3.2**, **-14.1**, **15.7**, **0.1**

Linear stepping, fixed width gaussian

Log stepping, fixed width gaussian

🛟 Fermilab

13 1/13/21 Presenter | Presentation Title or Meeting Title

- Use a 1D parameter space with -25 < x < 25
- Use a flat likelihood for simplicity
- Run McMC with 1,000,000 iterations
- Do this 5 times with random starting points

- **5.1**, **3.2**, **-14.1**, **15.7**, **0.1**

Log stepping, fixed width gaussian

This strategy will never explore negative values

Linear stepping, variable width gaussian

 X_{i+1}

🛟 Fermilab

The step size is infinitesimally small for small lxl

Accept if x_i ' is in the allowed range and $L(x_i)$ satisfies criteria

- Use a 1D parameter space with -25 < x < 25
- Use a flat likelihood for simplicity
- Run McMC with 1,000,000 iterations
- Do this 5 times with random starting points

- **5.1**, **3.2**, **-14.1**, **15.7**, **0.1**

Linear stepping, variable width gaussian

For small IxI, step size is infinitesimally small. This strategy will not populate large IxI

Linear stepping, variable width gaussian with minimum

Accept if x_i ' is in the allowed range and $L(x_i)$ satisfies criteria

‡ Fermilab

 X_{i+1}

- Use a 1D parameter space with -25 < x < 25
- Use a flat likelihood for simplicity
- Run McMC with 1,000,000 iterations
- Do this 5 times with random starting points

- **5.1**, **3.2**, **-14.1**, **15.7**, **0.1**

Linear stepping, variable width gaussian with minimum

Parameters that can take on negative values

Parameter	Range	Stepping
Iμl	[0, 25] TeV	Propose: linear, vary width with min
IM ₁ I	[0, 25] TeV	Propose: linear, vary width with min
IM ₂ I	[0, 25] TeV	Propose: linear, vary width with min
$ A_t , A_b , A_\tau $	[0, 7]	Propose: linear

- Will need to tune:
 - Coefficient of variable width (0.5 $|x_i|$? 0.1 $|x_i|$? etc.)
 - Minimum width of the gaussian

Discussion

- Any questions?
- Let's hear what people think!

