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‘ Why Quantum Computing?

Fundamentally change what is computable

o The only means to potentially scale computation exponentially with the number of devices

Solve currently intractable problems in chemistry, simulation, and optimization
o Could lead to new nanoscale materials, better photovoltaics, better nitrogen fixation, and more

A new industry and scaling curve to accelerate key applications
o Not a full replacement for Moore’s Law, but perhaps helps in key domains
Lead to more insights in classical computing

o Previous insights in chemistry, physics and cryptography
o Challenge classical algorithms to compete w/ quantum algorithms




NISQ

Now is a privileged time in the history of science and technology, as we
are witnessing the opening of the NISQ era (where NISQ = noisy

intermediate-scale quantum).
-John Preskill, Caltech

IBM lonQ Google

53 superconductor qubits 79 atomic ion qubits 53 supercond qubits
\ (11 controllable) /




‘ Quantum computing is at the cusp of a revolution

Every qubit doubles computational power
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The Gap between Algorithms and Hardware

Average two-qubit gate error rate
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The Gap between Algorithms and Hardware
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The EP1QC Goal

Develop algorithms, software, and hardware in concert to close the gap between
9 algorithms and devices by 100-1000X, accelerating QC by 10-20 years. )
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‘ EP1QC Results

m In 2.5 years:
o Many optimizations, each 2-10X, up to 10000X
60+ papers, 5 best paper awards .
6 patents pending

- e
o 1 startup SUP%B.TECH

“ Il Computer

1 textbook (EdX courses forthcoming) s

Techniques integrated into IBM QISKit and
Google Cirg Qiskit mmm




‘ Highlights
e

Minimizing measurements for quantum chemistry (IBM Q Best Paper, QCE20 Best Paper) 8-30X fewer measurements
Direct-to-pulse compilation (ASPLOS19,MICRO19,MICRO20) Up to 10X lower time
Noise-adaptive mapping and scheduling (ASPLOS19, ISCA19, Micro Top Pick 20) Up to 28X reliability

6 Quitrit circuits (QIP19 best poster, ISCA19, Micro Top Pick 20, ACM TQC20) Up to 70X fewer devices

| -

8 Technology-Aware Error Correction (stabilizer slicing, PRL18) 90X increased reliability

)

& Scheduling for crosstalk mitigation (ASPLOS20) 5.6X reduced error
Frequency assignment for crosstalk mitigation (MICRO20) 75X reduced error
Qubit reuse with uncomputation (ISCA20) 1.5-9.6X reduced resources
Superconducting hardware error decoder (ISCA20) 1000-10000X increased

qubits*gates
Shuttling-based, trapped-ion architecture (ISCA20) 1000-10000X reduced error
Industry summit (FCRC19) and advisory board Create a Quantum Computer
Systems Discipline and a

.5 Open-source SW and Tutorials (100’s participants, 1000’s downloads, 1000’s youtube views) Workforce Pipeline.

8

_g Quora Quantum Computing Session (150K+ views)

Ll

QIS K-12 Key Concepts and Q-12 Partnership
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‘ 1. Software can Adjust to Hardware

s Quantum hardware
varies day to day

= |BM publishes
calibration data for
their machines every
day
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‘ 1. Software can Adjust to Hardware

Quantum Bits vary in
quality day to day
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‘ 1. Software can Adjust to Hardware

Operations between
different pairs of
quantum bits vary in
quality day to day
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‘ 1. Software can Adjust to Hardware

= Quantum hardware oD
varies day to day |

m Software can target a
specific machine for a -
specific day o
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‘ Avoiding Bad Hardware

IBM Pg CNOT error rate = 0.2, reliabiity = 0.3
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"The Result

x Up to 28X better reliability (2.9X mean)
= Now integrated into IBM QISKit

s Changed how quantum programs are compiled
o Won “Top Picks” best papers for 2019 award

s The key was to break the compile-once model




‘ 2. Direct-to-Pulse Compilation
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‘ Direct-to-Pulse Results

m 2X to 10X faster

s But it can take hours to
compile a program before
we can run it

= Thisis a problem for an
important class of
algorithms that alternates
between classical and
quantum computing

19



| Variational Quantum Algorithms

[ Variational Algorithm }

[ Pulse optimization ]<

1L
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' Flexible Partial Compilation

Flexible Partial Compilation
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‘ Partial Compilation Results

m 2X pulse speedups

= 10-80x faster compilation than
previous method

s 2 patents pending

m [he key was fto break the
abstraction of machine
instructions and target pulses
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‘ 3. Simultaneous Measurement

m Variational Quantum

Pranav Gokhale*!, Olivia Angiuli?, Yongshan Ding', Kaiwen Gui®, Teague Tomesh* *, Martin Suchara® *,
Margaret Martonosi®, and Frederic T. Chong'

L] ]
'Department of Computer Science, University of Chicago
*Department of Statistics, University of California, Berkeley
3Pritzker School of Molecular Engineering, Umwcmly of Chicago
#Argonne National Laborator
SDepartment of Computer Science, penceon University
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\ Simultaneous Measurement

Deuteron <H> estimation, 100 total shots on IBM 20Q
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= Graph analysis to group terms to measure

s Deuteron on IBM shows less error even on a small problem

s Example of how algorithms can be restructured for greater efficiency
m  Optimization algorithms are likely variational also



‘ 4. Reusing Quantum Bits

= Similar to classical memory management or
garbage collection

= But in quantum programs, you must “uncompute”
part of your work in order to reuse a quantum bit

25



‘ Uncomputation

s Mapping and scheduling for uncomputation and reuse
= Dealing with nested functions

Compiler Allocate Reclaim Recursive Recomputation
Decision .

Reclaim

Allocate ‘ Qubit reservation l




‘ Uncomputation

s Mapping and scheduling for uncomputation and reuse
= Dealing with nested functions
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Out Garbage
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‘ Uncomputation

s Mapping and scheduling for uncomputation and reuse
= Dealing with nested functions

Compiler Allocate Reclaim Recursive Recomputation
Decision .

‘ Qubit reservation l Reclaim
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‘ Uncomputation

s Mapping and scheduling for uncomputation and reuse
= Dealing with nested functions

Recursive Recomputation

ompiler Allocate Reclaim

Decision .

1
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‘ Uncomputation

s Mapping and scheduling for uncomputation and reuse
= Dealing with nested functions

Compiler Allocate Reclaim Recursive Recomputation
Decision .

Reclaim

Allocate ‘ Qubit reservation l
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‘ Uncomputation

s Mapping and scheduling for uncomputation and reuse
= Dealing with nested functions

Compiler Allocate Reclaim ﬁ Recursive Recomputation

Decision .
U

Out Garbage

Allocate

| Reclaim

‘ Qubit reservation
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‘ Reuse Results

= Surprisingly, 50% more
accurate on current NISQ
machines
o Operations cause errors
o But uncompute can be
cheaper than moving qubits
= 10X more accurate on
future machines

7 8 9 210 211 12 213 2 14 15

199209219229 23 YAV s Wo W55
\_/
28 29
30331132 2133 3734 27 35 57 36 u% 37 o 38
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‘ 5. Qutrits instead of Qubits

s Store 3 values instead of 2 in each 15,
hardware device

m 3-level logic is not new, but makes
more sense for quantum devices

m Especially useful for programs that
need some extra quantum bits to be
more efficient (some temporary
space)

[Koch 07]
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| Qutrit Results

m Fewer devices needed
o Up to 70X reduction for some

programs

m A lot of interest from
hardware platforms

o IBM OpenPulse experiment
s Also won the “Top Picks”

best papers for 2019
award
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‘ 6. Crosstalk Mitigation

Run CNOT 1,2 in parallel with CNOT 6,7
Error rate increases by 10X due to crosstalk!
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‘ Crosstalk Mitigation Design Space

Qubit Tunability

Tunable Qubit
Fixed Coupler

THIS WORK

arder to build)

Tunable Qubit
Tunable Coupler

GOOGLE SYCAMORE

~—__—

Fixed Qubit
Fixed Coupler

IBM Q

Coupler Tunability
(harder to build)
Fixed Qubit
Tunable Coupler
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‘ Crosstalk Mitigation Design Space

Qubit Tunability

(

Tunable Qubit
Fixed Coupler

THIS WORK

harder to build)

Tunable Qubit
Tunable Coupler

GOOGLE SYCAMORE

13X

Fixed Qubit
Fixed Coupler

IBM Q

Coupler Tunability
(harder to build)
Fixed Qubit
Tunable Coupler
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‘ Crosstalk Mitigation Design Space

Qubit Tunability

Tunable Qubit
Fixed Coupler

THIS WORK

Tunable Qubit
Tunable Coupler

GOOGLE SYCAMORE

\

/ Coupfer Tunability

Fixed Qubit
Fixed Coupler

IBM Q

(harder to build)
Fixed Qubit
Tunable Coupler
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‘ Frequency Scheduling

Connectivity graph
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Program Success Rate

‘ Crosstalk Mitigation Results
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‘ Recap: Quantum Computer Systems Design

Quantum Program

Program Level
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‘ Domain-Specific System Design

m Vertically-integrated, physics-aware software stacks

= Analogous to trends in classical systems
o Hennessey-Patterson Turing Award Lecture

LLVM IR GPU
CPU
Crappler XLA HLO TPU IR

Several others TPU
GPU (also)

nGraph
CPU (also)

\ NNAPI Android
[ TensorFlow Lite

Many others

TensorFlow
Graph

Tensorflow Software Stack for Machine Learning [Tensorflow Blog]
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OPEN PROBLEMS




How do I know if my QC program is correct?

s Bootstrapping problem...
o  Quantum hardware will be barely reliable
o Quantum software will be untested at a

scale

s  Quantum assertions
o [Huang ISCA’19, Zhou ASPLOS’20]

s Formal methods (verified
compilation):
o Qwire [Paykin POPL’17], sQIRe [Hietala]
o Error Bounds [Hung POPL’19]
o Certiq [Shi]

m Can we check useful properties in

polynomial time for programs with
gquantum supremacy?




‘ Formal Verification

n Contract-based Verification of a Realistic
Quantum Compiler, Yunong Shi, Xupeng Li,
Runzhou Tao, Ali Javadi-Abhari, Andrew W.
Cross, Frederic T. Chong, and Ronghui Gu.

arXiv:1908.08963
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' CertiQ

A verification framework
based on SMT reasoning |  ow

Qiskit Terra Statical ly Qiskit Terra
Library Verified Specification

i n Z3 ] User Implementation
v i I Pass
. Mostly focus on Eﬁ SN
compilation passes | T T ra
° F O r n eW CO d e [Python Interpreter é Ealizer

submission ,, g |
Program ! Counter-

« Automated and @ @

SCa I a b I e Execution Verification




Design-by-Contract
Methodology: modular verification

« Pre-conditions
« Post-conditions

o |Invariant

side effects

precon ditions

input values

-

software
component

errors/exceptions

~

\d

postconditions

output values
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Certig Summary

® 4 QISKit bugs found: Non-terminating mappert, 2-qubit opt, Commutation pass

® We should provide safe atomic circuit rewriting methods in quantum software
development.

® We should be very careful about the quantum data structure’s scope and their
equivalence.

® The method of CertiQ can be reused in other layers in the quantum stack and might

pave the way to a fully verified quantum system.

Challenge:

Cross-layer optimization versus modular verification
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Specialization vs Abstraction

Short-term SW

Gap?

M

Long-term SW

A

100

1000 10000

qubits

100000
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16:23
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‘ Summary

. QC iS at a hiStoriC time ': f\@ MO\RGA/N CLAYPOOL PUBLISHERS
: . i 1+ 1 / Quantum

= A computer systems view Is (Sl RrOe—""
critical: oz ey Systems
V "“1 [ : l Research for Noisy

o To accelerate progress R y3 - i

R s g ) Quantum Computers

o To develop in the workforce
= More info:

SYNTH LECTURES ON
COMPUTER ARCHITECTURE

epigc.cs.uchicago.edu e
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