SAND TPC simulations update

Pierre Granger - Accelerator neutrino group CEA 01/12/2021

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Irfu - CEA Saclay

The analysis introduction

Goals of the analysis

- Estimating the resolution requirements with DUNE beam
- Evaluate the impact of different parameters such as the pad size, charge spreading (RC) and electronics shaping time.

Data used

- Only FHC for now
- Interactions simulated in the whole detector (Guang's simulations)

The TPCs in SAND

- 3 TPCs:
- DOWNSTREAM : $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ $3.3 \mathrm{~m} \times 3 \mathrm{~m} \times 0.77 \mathrm{~m}$
- BOTTOM and TOP : (x, y, z) $3.3 \mathrm{~m} \times 0.57 \mathrm{~m} \times 1.41 \mathrm{~m}$
- Cathode in the middle of the TPCs (x direction)
- 2 readout planes for each tpc

Simulation

Events generation

- Events are generated with GENIE.
- Energy deposits in all the active areas of the detector are computed by GEANT.

TPC simulation

1. Events are given a vertex time according to the beam time profile.
2. Energy deposition segments of charged particles are projected onto ERAMs
3. Drift effects taken into account : drift time, longitudinal spread, transversal spread
4. Fixed charge spreading applied on pads $->$ fixed multiplicity per hit
5. Each pad hit is stored
6. Computing overlaps for each pad in a given time window (proxy for spreading time + shaping time).

First implementation in erep-sim with the help of Clark that is now working on reconstruction.

DIS event reconstruction. White tracks on the right side are in the TPC.

Inverse cumulative distribution of overlaps - Impact of time window

A narrower time window leads to less overlaps by mostly reducing inter-event overlaps.

Inverse cumulative distribution of overlaps - Impact of pad size

Smaller pads leads to slightly less overlaps.

Inverse cumulative distribution of overlaps - Impact of charge spreading

Charge spreading increases overlaps. Here a multiplicity of 3 pads per hit is considered.

Inverse cumulative distribution of overlaps - DOWNSTREAM

Inverse cumulative distributions

In all the tested configurations, less than 1% of the events contain tracks with more than 10% of overlapping pads (0.1% of events for 20% of overlapping pads).

Conclusions on overlaps

- Choosing a low enough shaping time is necessary to ensure event separation in a given spill.
- Charge spreading increases the amount of overlaps, mostly inside given events.
- Pad size seems to have only little effect on the overlaps (at least in the considered range).

Charge spreading

Currently charge spreading is only taken into account as a fixed pad multiplicity. Necessity to implement the physics behind it.

Formula for charge dispersion of 2D continuous RC network :

$$
\frac{\partial \rho}{\partial t}=\frac{1}{R C}\left(\frac{\partial^{2} \rho}{\partial x^{2}}+\frac{\partial^{2} \rho}{\partial y^{2}}\right)
$$

Solution for infinite size and initial gaussian distribution :

$$
\rho(x, y, t)=\frac{N q_{e}}{2 \pi\left(2 h t+w^{2}\right)} \exp \left[-\left(x^{2}+y^{2}\right) /\left(2\left(2 h t+w^{2}\right)\right)\right]
$$

$h=\frac{1}{R C}, w$ is the initial gaussian width and $N q_{e}$ the initial quantity of charged deposited. Ongoing implementation in erep-sim.

δP_{t} resolution - inputs

DESY resolution data ($\sigma_{r, \phi}$) as function of angle are used.
Resolution is computed with :

$$
\frac{\sigma_{p_{T}}}{p_{T}}=\frac{p_{T}}{0.3 B L^{2}} \sqrt{\frac{720}{N+4}} \cdot \sigma_{r \phi}
$$

Number of tracks as function of the angle in simulation.

δP_{t} resolution

Estimated resolution from simulation (10 mm pads).

Backup slides

Timing

Events time distribution in spills

- $10 \mu \mathrm{~s}$ spills of 6100 ns separated bunches
- Maximum longitudinal spread is ~ 50 ns

T2K gas parameters :

- $v_{\text {drift }}=7.8 \mathrm{~cm} \mu \mathrm{~s}^{-1}$
- $\sigma_{L}=290 \mu \mathrm{~m} / \sqrt{\mathrm{cm}}$

Statistics about events

Event multiplicity per spill

Event multiplicity with tracks in tpcs per spill

- 93,017 simulated events in 1,000 spills
- Only 1,714 interactions inside 3DST
- 1,363 3DST interactions lead to at least 1 track in a TPC
- 8,104 ECAL+Yoke interactions lead to at least 1 track in a TPC

Track multiplicity per event

Track multiplicity per event in tpc DOWNSTREAM

Track multiplicity per event in tpc TOP

Track multiplicity per event in tpc BOTTOM

Events with 0 tracks are not shown but are taken into account in the event proportions.

Understanding events with a lot of overlapping pads

Overlaps

Downstream TPC plane 0 - Event id

Downstream TPC plane 1 - Event id

2 different kind of overlaps are considered

- inter-event overlaps : overlaps between tracks of two different events from the same spill
- intra-event overlaps : overlaps between tracks of the same event

Evolution of inter-events overlaps with charge spread - DOWNSTREAM

Number of overlapping events per spill DOWNSTREAM Pad size: 10 mm ; Time interval: 400 ns

Number of overlapping tracks per spill DOWNSTREAM Pad size: 10 mm ; Time interval: 400 ns

Fraction of tracks overlapping per spill DOWNSTREAM Pad size: 10 mm ; Time interval: 400 ns Inverse cumulative distribution

- 10 mm charge spread on each side $\Longrightarrow 3$ pads multiplicity.

The introduction of charge spreading slightly increases the number of inter-events overlaps.

Evolution of intra-event overlaps with charge spread - DOWNSTREAM

Number of overlapping pads per event DOWNSTREAM Pad size: 10 mm ; Time window: 400 ns

Fraction of tracks overlapping per event DOWNSTREAM Pad size: 10 mm ; Time interval: 400 ns Inverse cumulative distribution

Only events with at least 1 track in the TPC are considered.
Charge spreading increases the amount of overlapping pads.

Evolution of inter-events overlaps with pad size - DOWNSTREAM

Number of overlapping events per spill DOWNSTREAM No charge spread; Time interval: 400ns

Number of overlapping tracks per spill DOWNSTREAM No charge spread; Time interval: 400ns

Fraction of tracks overlapping per spill DOWNSTREAM No charge spread; Time interval: 400ns Inverse cumulative distribution

Using smaller pads only slightly reduces the number of inter-events overlaps.

Evolution of intra-event overlaps with pad size - DOWNSTREAM

Number of overlapping pads per event DOWNSTREAM No charge spread; Time window: 400 ns

Number of overlapping tracks per event DOWNSTREAM No charge spread; Time interval: 400 ns

Fraction of tracks overlapping per event DOWNSTREAM No charge spread; Time interval: 400 ns Inverse cumulative distribution

Pad size seems not to impact largely the number of overlaps.

Evolution of inter-events overlaps with time interval - DOWNSTREAM

Number of overlapping events per spill DOWNSTREAM No charge spread; Pad size: 10 mm

Number of overlapping tracks per spill DOWNSTREAM No charge spread; Pad size: 10 mm

Fraction of tracks overlapping per spill DOWNSTREAM No charge spread; Pad size: 10 mm

The shaping time is very important to discriminate the tracks in time and impacts a lot inter-events overlaps.

Evolution of intra-event overlaps with time interval - DOWNSTREAM

Number of overlapping pads per event DOWNSTREAM No charge spread; Pad size: 10 mm

Number of overlapping tracks per event DOWNSTREAM

Time window has no effect on the number of overlapping pads for intra-event overlaps.

Estimation of P_{T} resolution

Momentum measurement - Relative error

A resolution $<2 \%$ can be achieved if the occupency is reasonable.

Charge spreading

The charge spreading radius does not depend on the $R C$ value. $R C$ only impacts the speed of the charge spreading.

Ongoing implementation in erep-sim.

