

Future Colliders: ELC-Anzatz

Vladimir SHILTSEV (Fermilab) Physics Limits of Ultimate Beams - III January 22, 2021 – Snowmass'21 AF1

Content:

- Part I
 - Ultimate colliders: Scope and Approach
 - Ultimate colliders: ELC-Ansatz, Units
 - Ultimate colliders: Limits of E
 - Ultimate colliders: Limits of L
 - Ultimate colliders: Limits of C
 - Other considerations: T
- Part II
 - Circular $pp / ee / \mu\mu$
 - Linear and Plasma ee / $\gamma\gamma$ / $\mu\mu$
 - Exotic (crystal) μμ / μμ
- Conclusions / Q&A / Discussion

In search of uniform approach to discuss far future/ultimate machines

- BASED ON EXISTING TECHNOLOGIES
 - Circular ee
 - Linear ee/γγ
 - Circular pp
 - Circular μμ
- BASED ON EMERGING TECHNOLOGIES
 - ERL ee/γγ
 - Plasma ee/γγ
 - Linear $\mu\mu$ / Plasma $\mu\mu$
- EXOTIC SCHEMES
 - Crystal linear $\mu\mu/\tau\tau$
 - Crystal linear ττ
 - Crystal circular pp

"ELC – Ansatz"

- We will evaluate possible (ultimate) future colliders on base of
 - Feasibility of *Energy*
 - Feasibility of *Luminosity*
 - Feasibility of Cost
- For each machine type / technology we will start with what is the state-of-the-art now and attempt to make "1-2-several" orders of magnitude steps in Energy
 - see how if affects *Luminosity*
 - see how it affects Cost
- Leave it to others to judge where the lower limit on L and upper limit pn C are... other limits may appear

"ELC – Ansatz" : Choice of Units

- Units of Energy will be TeV
 - most often cme = 2 x E_beam, sometimes per beam
- Units of Luminosity will be ab⁻¹/yr
 - e.g., 1e35 over 1e7 sec/yr... HL-LHC will have 0.3 ab⁻¹/yr
 - factor of ~2 uncertainty in peak lumi / machine availability
- Units of power(total facility) will be *TWh/yr Eg CERN/LHC ~200MW and 1.1-1.3 TWh/yr*
- Units of Cost will be LHCU
 - cost of the LHC construction, approx. 10B\$ see below
 - for other machines the cost will be estimated using $\alpha\beta\gamma$ model with uncertainty O(2) - see below
 - the $\alpha\beta\gamma$ model needs to be extended for novel approaches

🔁 Fermilab

Limits on Energy (1)

Linear vs Circular

$$\Delta U_{SR} = \frac{90 \text{ keV. } E_{e}^{4}(\text{GeV})}{\text{R[m]}}$$

Circular does not
 make sense beyond these energies

 $\Delta U_{SR} < E_e$ $E_e < 500 \text{ GeV} \cdot \left(\frac{R}{10 \text{ km}}\right)^3$

E_ < 600 TeV. (MOTONS: E. < 10 Per

Limits on Energy (2)

 Particles don't survive acceleration

$$\frac{\mathrm{d}N/\mathrm{d}t}{N_0} \approx \left(\frac{m_{\mu}c^2}{E}\right)^{\kappa}, \ \kappa = (m_{\mu}c/\tau_0G)$$

- Unstable particles for muons $G \ge 3 \text{ MeV m}^{-1}$

for
$$au$$
-leptons $G \gg 0.3~{
m TeV}~{
m m}^{-1}$

 Lossy transport from cell to cell (loss in plasma material, c-t-c efficiency)

$$\begin{pmatrix} 1 - \frac{4N}{N} \end{pmatrix}^{M} \leq 1$$

$$M = \frac{E}{4E_{cEu}} = \frac{5TeV}{5Gev} = 10^{3}$$

$$\frac{4N}{N} \leq 1 \implies \frac{4N}{N} \leq 10^{3} \text{ lab}$$

Limits on *Energy* (3)

Corollary limits

- Space/area

available

Circumference 100 km , B<16 T , *E*<50 TeV Circumference 40,000 km, B=1 T, *E*<1.3 PeV Length 50 km , G<0.1 GV/m, *E*<5 TeV Length 10 km, G<1 TV/m, *E*<10 PeV

For example:

- Power available
- Money available

Limits on Luminosity (1)

General Equation

- rewrite with norm.emm.
- HEP demand

9

- limits, eg, beam $P = f_0 \cdot n_b \cdot N_p \cdot \delta \cdot mc^2$ power $\mathcal{I} = \frac{p^2}{f_0(h_b) \delta \cdot mc_p \cdot m^2 c^2}$ Shiltsev | Limits of Coll

Limits on Luminosity (2)

OFF is limited (e.g. 1Å)

• Another example

- beam-beam limit
- space-charge limit
- beam loading
- event pile-up

V_~ Np. im

Limits on Luminosity (3)

- particle production - beamstrahlung - synchrotron radiation - SR/meter n pu. - IR rad damage - v-radiation dose TMCi, RW, e-cloud N~ instabilities - jitter/emittance growth

01/15/2021

🔁 Fermilab

All Colliders: Past, Existing, under Discussion

Shiltsev&Zimmermann, Rev.Mod.Phys. (2021)

of

On base

Paradigm Shift looming for > 0.1-1 PeV...

Limits on Cost(1)

- Cost is set by technology
 - Accelerator technology
 - Civil construction technology
 - Power production, delivery and distribution technology

2014 Cost analysis:

2014 JINST 9 T07002

17 "Data Points" - Costs of Big Accelerators:

- Actually built:
 - RHIC, MI, SNS, LHC
- Under construction:
 - XFEL, FAIR, ESS
- Not built but costed:
 - SSC, VLHC, NLC
 - ILC, TESLA, CLIC, Project X, Beta-Beam, SPL, v Factory

Wide range :

- 4 orders in Energy, >1 order in Power, >2 orders in Length
- Almost 2 orders in cost
 - (normalized to US TPC)

	Cost (B\$) Year	Energy (TeV)	Accelerator technology	Comments	Length (km)	Site power (MW)	TPC range (Y14B\$)
SSC	11.8 B\$ (1993)	40	SC Mag	Estimates changed many times [6-8]	87	~ 100	19-25
FNAL MI	260MS (1994)	0.12	NC Mag	"old rules", no OH, existing injector [9]	3.3	~ 20	0.4-0.54
RHIC	660MS (1999)	0.5	SC Mag	Tunnel, some infrastructure, injector re-used [10]	3.8	~ 40	0.8-1.2
TESLA	3.14 B€ (2000)	0.5	SC RF	"European accounting" [11]	39	~ 130	11-14
VLHC-I	4.1 B\$ (2001)	40	SC Mag	"European accounting", existing injector [12]	233	~ 60	10-18
NLC	~ 7.5 B\$ (2001)	1	NC RF	~ 6 B\$ for 0.5 TeV collider, [13]	30	250	9–15
SNS	1.4 B\$ (2006)	0.001	SC RF	[14]	0.4	20	1.6-1.7
LHC	6.5 BCHF (2009)	14	SC Mag	collider only — existing injector, tunnel & infrstr., no OH, R&D [15]	27	~ 40	7-11
CLIC	7.4-8.3B CHF(2012)	0.5	NC RF	"European accounting" [16]	18	250	12-18
Project X	1.5 B\$ (2009)	0.008	SC RF	[17]	0.4	37	1.2-1.8
XFEL	1.2 B€ (2012)	0.014	SC RF	in 2005 prices, "European accounting" [18]	3.4	~ 10	2.9-4.0
NuFactory	4.7-6.5 B€ (2012)	0.012	NC RF	Mixed accounting, w. contingency [19]	6	~ 90	7-11
Beta- Beam	1.4-2.3 B€ (2012)	0.1	SC RF	Mixed accounting, w. contingency [19]	9.5	~ 30	3.7–5.4
SPL	1.2-1.6 B€ (2012)	0.005	SC RF	Mixed accounting, w. contingency [19]	0.6	~ 70	2.6-4.6
FAIR	1.2 B€ (2012)	0.00308	SC Mag	"European accounting" [20], 6 rings, existing injector	~ 3	~ 30	1.8-3.0
ILC	7.8 B\$ (2013)	0.5	SC RF	"European accounting" [21]	34	230	13-19
ESS	1.84 B€ (2013)	0.0025	SC RF	"European accounting" [22, 23]	0.4	37	2.5-3.8

The $\alpha\beta\gamma$ cost model: $Cost(TPC) = \alpha L^{1/2} + \beta E^{1/2} + \gamma P^{1/2}$

- a) Is for a "green field" facility !
- b) US-Accounting !
- c) There is hidden correlation btw *E* and technology progress
- d) Pay attention to units(10 km for L, 1 TeV for E, 100 MW for P)
 - α≈ 2B\$/sqrt(L/10 km)
 - β≈ 10B\$/sqrt(E/TeV) for SC/NC RF
 - β≈ 2B\$ /sqrt(E/TeV) for SC magnets
 - β≈ 1B\$ /sqrt(E/TeV) for NC magnets
 - γ≈ 2B\$/sqrt(P/100 MW)

USE AT YOUR OWN RISK!

Ullustrations

Comment:

Sqrt-functions are quite accurate over wide range because such dependence well approximates the *"initial cost" – effect* :

Take LHC as an Example:

- αβγ Model:
 - 40 km of tunnels
 - 14 TeV c.o.m SC magnets
 - ~150 MW of site power

$$2\sqrt{40/10} = 4$$

 $2\sqrt{14} = 7.5$

$$2\sqrt{150/100} = 2.5$$

TOTAL PROJECT COST : 14B\$ ± 4.5B\$

• ITF T.Roser talk @ PLUB-II (USD 2021):

- existing injector complex
 4.6 B\$
- new accelerator systems
 4.06 B\$
- new infrastructure and civil 2.75 B\$

Total:

explicit labor

~1.4 B\$

"αβγ – Model" : Caveats

- (once again) note three warning signs:
 - "...+- 30%green field.... US accounting...."
 - rounded powers and coefficients, e.g., $\sqrt{x} \approx x^{0.4...0.6}$
- Analysis was done in 2013:
 - inflation 7yrs x 3% = 21%
 - many more projects have been costed since then, others updated
- "Not-yet-built" machine costs estim'd by proponents
- "One person study" limited research on the subject
- That's why:
 - a) ITF work is very important
 - b) I'll use LHCU for rough estimates/analysis here

"αβγ – Model": Notes

- Costs of future technologies are not well known:
 - plasma, lasers, crystals, "magic cheap" magnets, tunnels, HTS, etc
- Costs of civil construction and power systems are driven by larger economy (not by us)... "stable"
- Having injector (~1/3 of cost) \rightarrow factor of 2 in energy reach
- Follows from the model:
 - Cost is weak function of luminosity (see next slide)
 - Also, LHC 10B\$, HL-LHC 1B\$ with x5 increase in luminosity
 - It's OK to start high *E*, low *L*...CESR, Tevatron increased *L* >100x, LHC >10x
 - Cost is moderate function of length/circumference
 - Cost is strong function of Energy and technology
- Of course, the model does not tell us "what's affordable"
 - but at least allows approximately sort proposals in categories
 - E.g., "Less than LHCU", "1-2 LHCU", "More than 3 LHCU", etc

🛠 Fermilah

Example: Muon Colliders cost(color) vs E vs Lumi

Modern Muon Physics Belected Issues ger I Senekovsky Vitely N Baturn Jess H. Brewer Bmitri Benisov Feder Karpeshin Nicola: Popov Viedimir D. Shitsev

Modern Muon Physics: Selected Issues, I.Strakovsky, et al (Nova, 2020)

01/15/202

Shiltsev | Limits of Colliders | PLUB-III

Some projects discussed @ EPPSU'19 and Snowmass'21

$1/(3 \times LHC)^2 = 10\%$

of community size, budget and time ...Mike KORATZINOS : lower cost? $\rightarrow 1/(1+Cost^2)...$

Colliders: Probability to Be Built

~1/ Cost^2 (is it true?) 1/(1 x LHC)^2 = 100%

 $1/(2 \times LHC)^2 = 25\%$

... Tao HAN : calibration is function

2.0% 평 1.5% 8 1.0% 0.5% 0.0%

4.0%

3.5% 3.0%

2.5%

Source: HM Land Registry

Fig 3 - Distribution of House Prices, 2015

Distribution of Home Sales Prices in San Francisco

Top of price band (£5k bands

~1/ Cost^2

1.5%

1.0%

0.54

24

Energy Ranges and Reference Points : *leptons* vs *hadrons*

~ Equivalent reach in pp after rescaling for pdf's

Reference Points oo and (Far) Future oo

Construction Time... ~SQRT(Cost)?

Peak spending rate depends on \$\$/yr limit and on # of available 2 experts ...currently, btw 0.2 to 0.5 B\$/yr (total World's HEP ~4B\$)

b

The latest: *EIC at BNL* Reference Funding Profile

- Reprioritized and New Funding
- FY2021 Budget of \$30M supports schedule for CD-1
- Funding Profile Set prior to CD-2
- \$100M Investment by New York State for Conventional Construction

rmilab

"Social Cost" and Social Limits

- There is probably a limit on cost of ultimate accelerators
 - how much society (national, regional, global) wants/can afford spending on HEP...slowly varies in time (grows?)
 - current estimate for global big collider ~ 2-3 LHCU ?
- Since recently awareness of the "carbon footprint"/"ecology" limit for large facilities
 - current estimate for global big collider ~ 1(2) TWH/yr ?
 - disturbed environment (land use, radiation, pollutants, etc)
- Scarcity of materials
 - Helium, Nb, W, etc?

Fermilab

Commissioning Time : *T* ~ *Complexity*

CPT-theorem – V.Shiltsev Mod. Phys. Lett. A, vol. 26, No. 11 (2011) pp. 761-772 The evolution of the performance of continuously improving facilities where every next step brings *x-fold* improvement on top of previous improvement can be further simplified in an approximate formulas:

$$C \cdot P = T \,, \tag{3}$$

where the factor $P = \ln (\text{luminosity})$ is the "*performance*" gain over time interval T, and C is a machine-dependent coefficient equal to average time needed to increase the performance (in the case of colliders — luminosity) by e = 2.71... times, or boost the "performance" P by 1 unit. Both, T and C have the dimension of time,

A. Get the energy ("one particle"): $C \sim O(1)$ yr – for known technologies, longer for new, ~# of elements B. Get the (ultimate) luminosity: depends on luminosity risk – eg for P=4.5 (risk ~100 in L) and $C\sim 2 \rightarrow T$ can be as long as T=4.5x2=9 yrs

Content:

Part I

- Ultimate colliders: Scope and Approach
- Ultimate colliders: ELC-Ansatz, Units
- Ultimate colliders: Limits of E
- Ultimate colliders: Limits of L
- Ultimate colliders: Limits of C
- Other considerations: T
- Part II
 - Circular $pp / ee / \mu\mu$
 - Linear and Plasma ee / $\gamma\gamma$ / $\mu\mu$
 - Exotic (crystal) μμ / μμ
- Conclusions / Q&A / Discussion

Circular pp Colliders

- Can use Tevatron and LHC as reference pointw
- Parameter sets exist for SCC, FCC-hh, SppC, VLHC, Eloisatron
- Major advantages:
 - known technology and physics
 - good power efficiency ab⁻¹/TWh
- Major limitations:
 - Size (magnetic field B)
 - Power
 - Beam-beam, burn-off, instabilities
 - Synchrotron radiation
 - Cost

pp Luminosity

Beam-beam limit #1

3= TN

J~f. 8 no Z~ 3. fo 8 no No

Other limits
- Pile up
- IR radiation damage
- Resistive wall instability
- TMCI
- e-cloud
- Turn around time vs
Luminosity evolution
3
MRW =
$$\tau_{RW}f_0 = \frac{\sqrt{2\pi}(E_p/e)a^3}{I_BZ_0\langle\beta\rangle} \sqrt{\frac{(1-\Delta v)\sigma_W}{cR^3}}$$
.
 $N_{thr} = 1.24 \times 10^{10} \times \sqrt{\frac{\sigma_s}{0.1 \text{ m}}} \frac{E}{3\text{TeV}0.005}}{K(\frac{a}{0.9 \text{ cm}})^3 \frac{520 \text{ km}}{C} \times \frac{250 \text{ m}}{\langle\beta\rangle}}$

Qualitative Cost Dependencies - 100 TeV pp

pp Colliders: Lumi and Cost vs Energy

"Globaltron" and other ideas

- Cost saving magnets
 - superferric
 - permanent
- Better/cheaper conductors
 - Iron-based SC, graphene?
- Can they give factor of ~5 in \$\$/(Tm)?
 - (doubts so far)... leave it to AF7

Figure 6. Enrico Fermi's "ultimate accelerator" encircling Earth.

as Enrico Fermi's ultimate accelerator or "globaltron" [46] (see Fig. 6), whose cost would exceed \$20,000B even under a modest estimate of \$0.5B per kilometer of a high-tech accelerator.

V.Kashikhin, FNAL beams-doc-8948 (2020)

Circular e+e- Colliders

• Let's skip them... dead end... SR power

- E.g. >0.5 TeV ring will be
 - Big (>200-300 km?)
 - Low luminosity O(10 fb-1/yr)
 - A lot of RF → expensive >1.5-2 LHCU

Circular Muon Colliders

- Parameter sets exist for 1.5, 3,
 6, 10, 14 TeV
- Major advantages:
 - factor of x7 in E_reach
 - best power efficiency ab⁻¹/TWh
 - Traditional core technologies
- Major limitations:
 - Muon production
 - Muon cooling
 - Neutrino radiation

NATURE PHYSICS | www.nature.com/naturephysics

arXiv:2007.15684

Muon colliders to expand frontiers of particle physics Jan 28, 2021

Muon colliders offer enormous potential for the exploration of the particle physics frontier but are challenging to realize. A new international collaboration is forming to make such a muon collider a reality.

K. R. Long, D. Lucchesi, M. A. Palmer, N. Pastrone, D. Schulte and V. Shiltsev

MC Luminosity

- *L* ~ *B* field
- Assuming :
 - Enough muons can be produced
 - L ~ Power x Energy

300·B

 $\dot{N} = N_0 \cdot n_b \cdot f_{rap} \sim 2.10^3 \cdot 5 \sim 10^{12} / s$ $\mathcal{I} \sim B \cdot P \cdot \delta \cdot \frac{N_0}{\epsilon}$

- At some energy, neutrino radiation sets the limit
- Ultimate lumi depends on suppression factor Φ

$$D(dose) \sim freq \cdot N_0 \cdot n_0 \cdot \frac{1}{9} \quad D \sim \frac{P_0^2}{9}$$

$$P_0 \sim P_0 = P_0$$

$$P_0 \sim P_0 = P_0$$

$$\frac{1}{2} \sim \frac{1}{9} \cdot \frac{1}{9} \cdot \frac{P_0^2}{9} = \frac{1}{9} \cdot \frac{P_0^2}{9}$$

$$\frac{1}{2} \sim \frac{1}{9} \cdot \frac{P_0^2}{9} \cdot \frac{P_0^2}{9} = \frac{1}{9} \cdot \frac{P_0^2}{9}$$
Fermilab

Neutrino Radiation Mitigation Φ~100 possible

MC: Lumi and Cost vs Energy

New muon production schemes

- LEMMA and
 - Gamma-Factory
 - small emittance
 - Intensity N/emm?
 - beam-beam
- Both require
 (expensive?) aux.
 e+ or p+ machines

F. Zimmermann

Nuclear Inst. and Methods in Physics Research, A 909 (2018) 33-37

Linear lepton Colliders

- Mostly $e+e-/e-e-/\gamma\gamma$
 - Muons possible, but μ-sources are expensive (and limited prod'n *dN/dt*)
 - Protons possible, but lose factor of 7 in effective cme energy reach in *hh*

ſ.

 $E_b = eGL$

- NC RF, SC RF, plasma, wakefields
- Major advantages:
 - No SR losses
 - RF acceleration well developed
- Major limitations:
 - L scales with power, jitter/size and beamstrahlung
 - plasma/wakefield acceleration is not fully matured yet (many unknowns energy staging, e+, power, cost, etc)

$$= (N_e n_b f_r) \left(\frac{1}{\sigma_y^*}\right) \left(\frac{N_e}{\sigma_x^*}\right) \frac{H_D}{4\pi}$$

$$\eta \equiv P_b / P_{\text{wall}}$$

$$N_e n_b f_r = \eta P_{\text{wall}} / e E_{\text{c.m.e.}}$$

 $L \propto \frac{\eta_{\text{linac}} P_{wall}}{1}$

(luminosity spectrum)

ee/γγ or μμ Linear Collider Luminosity

- Other considerations :
 - Positron production and acceleration in plasma
 - Can be solved by switching to ee/γγ
 - Beamstrahlung
 - Can be solved by ultrashort bunches or switching to ee/γγ or μμ (see M.Peskin @ PLUB-II and Swapan C. talk today)
 - Instabilities in RF structures or plasma
 - Jitter/emittance control
 - Problems grow with more elements and smaller beams at IP → limit at 1A

(T.Raubenheimer, PRSTAB 2000)

see detail analysis in eq D.Schulte, Rev. Accel. Sci. Tech. 9 (2016): 209-233.

Linear RF and Plasma: Lumi and Cost vs Energy

Exotic Colliders

- Acceleration in structured media, eg CNTs or crystals (<u>only muons!!!</u>)
- Major advantages:
 - solid density \rightarrow 1-10 TV/m gradients
 - continuous focusing and acceleration (no cells, one long channel, particles get strongly cooled *betatron radiation*)
 - small size promises low cost
- Major limitations:
 - "blue sky", O(10) papers, plans for proof-of-principle experiment *E336* @FACET-II (S.Corde, T.Tajima, et al)
 - how to drive Xtals? lasers, beams?
 - Cost is unknown, power is unknown, luminosity - (how low?)
 Fig. 2. Possible ways to excit

Acceleration in Xtals book (T.Tajima, et al 2020)

 $E \,[{\rm GV/m}] \approx 100 \sqrt{n_0 \,[10^{18} \,{\rm cm}^{-3}]}$

Fig. 2. Possible ways to excite plasma wakefields in crystals or/and nanostructures: (a) by short X-ray laser pulses; (b) by short high density bunches of charged particles; (c) by heavy high-Z ions; (d) by modulated high current beams; (d) by longer bunches experiencing self modulation instability in the media.

Exotic Coliders: Line of Thinking

 E_{cm} Size is limited <10 km \rightarrow calls for the highest gradients \rightarrow crystals \rightarrow muons

 $L = f \frac{N_1 N_2}{A}$ Luminosity calls for more particles in the smallest beam size

 $A \sim 1 \text{ Å}^2 = 10^{-16} \text{ cm}^{-2}$ This is the smallest beam size at IP

 $P = fn_{ch} \cdot NE \xrightarrow{\text{The power is limited < 10MW}} \rightarrow N \text{ is small at high } E \rightarrow Iow L$

XC Luminosity

- Considerations :
 - Muons/bunch < Xtal electrons excited

Employ many channels

- Limit beam power O(10MW)
- Combine n_channels to gain L
 via crystal funnel (? Is it possible)

$$L \,[\mathrm{sm}^{-2}\,\mathrm{s}^{-1}] \approx 4 \times 10^{33-35} \, \frac{P^2 \,[\mathrm{MW}]}{E^2 \,[\mathrm{TeV}] \, fn_{\mathrm{ch}}[10^8 \,\mathrm{Hz}]}$$
 milab

tited
$$100\lambda_p \times \lambda_p^2$$

 $N_0 \sim 10^3$
 $n_{ch} \sim 100$
gain a factor of n_{ch}
 $P = f n_{ch} NE$
 $f = 10^6 \, \text{Hz}$

 $L = f N^2 / A$

Xtal Collider

n~10²² cm⁻³, 10 TeV/m → 1 PeV = 1000 TeV

V.Shiltsev, Phys. Uspekhy <u>55</u> 965 (2012)

Xtal Colliders: Lumi and Cost vs Energy

Main Conclusions:

- For ultimate high energy colliders:
 - Major thrust is Energy
 - Major concern/limit is Cost
 - Main focus is Luminosity and Power
- Cost:
 - Critically dependent on core acceleration technology
 - Existing injectors and infrastructure greatly help
- High Energy means low Luminosity :
 - Don't expect more than 0.1-1 ab⁻¹/yr at 30TeV-1 PeV
 - Assume Power limited to 1-3 TWh/yr

Main Conclusions (2):

- For considered collider types:
 - Circular pp limit is close or below 100 TeV (14 TeV cm)
 - Circular ee limit is ~0.4-0.5 TeV
 - Circular $\mu\mu$ limit is between 30 and 100 TeV
 - Linear RF $ee/\gamma\gamma$ limit is between 3 and 10 TeV Plasma $ee/\gamma\gamma$
 - Exotic crystal $\mu\mu$ promise of 0.1-1 PeV, low Luminosity
- Muons are particles of the future

Helpful/cited references (next slide)

(Some) References:

- 1. $\alpha\beta\gamma$ model V.Shiltsev, JINST 9 T07002 (2014).
- 2. RMP Colliders V.Shiltsev, F.Zimmermann, Rev. Mod. Phys. (2021); see also arxiv
- 3. NatPhys MC K.Long, et al, Nature Physics (2021), see also arxiv
- 4. Eloisatron W.Barletta, in AIP Conference Proceedings, vol. 351, no. 1, pp. 56-67(1996).
- 5. Xtal collider V.Shiltsev, Physics Uspekhi, v.55 (10), p.1033 (2012)
- 6. F.Zimmermann NIMA 909 (2018): 33-37; see also ARIES Workshops summary
- 7. T.Raubenheimer Phys. Rev. ST Accel. Beams 3, 121002 (2000)
- 8. D.Schulte Plasma Colliders Rev. Accel. Sci. Tech. 9 (2016): 209-233.
- 9. Granada ALEGRO Input to EPPSU, #007a (Granada, 2019)
- 10. Modern Muon Physics: Selected Issues, I.Strakovsky, et al (Nova, 2020)
- 11. 2019 Crystal Workshop eds. T.Tajima et al *Beam Acceleration in Crystals and Nanostructures* (World Scientific, 2020)
- 12. CPT-theorem V.Shiltsev Mod. Phys. Lett. A, vol. 26, No. 11 (2011) pp. 761-772
- 13. Cheap magnets V.Kashikhin, Fermilab beams-doc-8948 (2021)

