SAND TPC simulation - SAND software meeting

Pierre Granger - Accelerator neutrino group CEA 01/20/2021

Irfu - CEA Saclay

The TPCs in SAND

• 3 TPCs :

- DOWNSTREAM : (x,y,z) 3.3 m × 3 m × 0.77 m
- BOTTOM and TOP : (x,y,z)3.3 m \times 0.57 m \times 1.41 m
- Cathode in the middle of the TPCs (x direction)
- 2 readout planes for each tpc
- Based on resistive micromegas

Simulation

- 1. Energy deposition spread uniformly along each track segment
 - Individual ionization electrons are generated and tracked
 - Electrons are drifted towards the pads with a velocity of 78 mm µs⁻¹
 - Longitudinal diffusion of 0.29 mm/ $\sqrt{\text{cm}}$ Transversal diffusion is neglected
- 2. Charge spreading in pads simulated as gaussian spread
 - Time spreading not yet simulated
 - Possible implementation of more accurate charge spreading to come
- 3. Simplified pad response with current passed directly to digitization
- 4. Electronics and DAQ simulated with DAQMulti class
 - 100 ns integration window
 - Signal is integrated while above given threshold
 - Hit time taken as the average current arrival time for each pad
- 5. Output is a collection of hits with position of the pad, charge and arrival time of the charge.

TPC + 3DST reconstruction example (Preliminary - See Clark's presentation)

DIS event reconstruction. White tracks on the right side are in the TPC.

Summary

TPC model

- A simplified TPC model is available for use.
- Current main simplifications are :
 - Charge spreading model (with no timing involved)
 - Pad response
- Current model should be enough for now.

Availability

- TPC model available in ERepSim: https://github.com/DUNE-ND-SAND/erep-sim. See
 Clark's presentation for full ERepSim description.
- $\bullet \ \ \mathsf{TPC} \ files : ERepSimDetectorTPC. \ [\texttt{c|h}] \ xx \ and \ ERepSimResponseTPC. \ [\texttt{c|h}] \ xx \\$

Backup slides

Charge spreading

Currently charge spreading is only taken into account as a gaussian.

Formula for charge dispersion of 2D continuous RC network:

$$\frac{\partial \rho}{\partial t} = \frac{1}{RC} \left(\frac{\partial^2 \rho}{\partial x^2} + \frac{\partial^2 \rho}{\partial y^2} \right)$$

Solution for infinite size and initial gaussian distribution :

$$\rho(x, y, t) = \frac{Nq_e}{2\pi(2ht + w^2)} \exp\left[-(x^2 + y^2)/(2(2ht + w^2))\right]$$

 $h=\frac{1}{RC}$, w is the initial gaussian width and Nq_e the initial quantity of charged deposited. Ongoing implementation in erep-sim.

Charge spreading

The charge spreading radius does not depend on the RC value. RC only impacts the speed of the charge spreading.

Ongoing implementation in erep-sim.

Full spill example in TPC (fig. from previous implementation)

δP_t resolution - inputs

Number of tracks as function of the angle in simulation.

DESY resolution data $(\sigma_{r,\phi})$ as function of angle are used.

Resolution is computed with:

$$\frac{\sigma_{p_T}}{p_T} = \frac{p_T}{0.3BL^2} \sqrt{\frac{720}{N+4}}.\sigma_{r\phi}$$

δP_t resolution

Estimated resolution from simulation (10mm pads).

Inverse cumulative distribution of overlaps - DOWNSTREAM

Inverse cumulative distributions

In all the tested configurations, less than 1% of the events contain tracks with more than 10% of overlapping pads (0.1% of events for 20% of overlapping pads).