

The 3DST Reconstruction

CubeRecon Status

Clark McGrew Stony Brook Univ.

- The existing 3DST and TPC software stack
- The (mainly) 3DST reconstruction concepts
- Basic evaluation of the 3DST performance
- Reconstructing the TPC: Pattern recognition
- Reconstructing the ECal: Hit formation

Geometry for 3DST, TPC, Calorimeter & Magnet

- All geometry is taken from DUNE ND-GGD
 - Software uses the input geometry, so it's insensitive to updates
- ➢ 3DST Geometry
 - → Cube size: 10mm x 10 mm x 10 mm
 - → Cubes: 252 x 236 x 200 (11.8944 M)
 - → Channels: 157072
 - ≻ 59472 xy + 50400 xz + 47200 yz
 - → Mass: 12.49 tons
- > TPC
 - → Based on Resistive MicroMEGAs
- ➤ Calorimeter
 - KLOE calorimeter installed with magnet
- Magnet: 0.6 Tesla

SAND Geometry v.13

Geometry for 3DST, TPC, Calorimeter & Magnet

- All geometry is taken from DUNE ND-GGD
 - Software uses the input geometry, so it's insensitive to updates
- 3DST Geometry
 - → Cube size: 10mm x 10 mm x 10 mm
 - → Cubes: 252 x 236 x 200 (11.8944 M)
 - → Channels: 157072
 - ≻ 59472 xy + 50400 xz + 47200 yz
- ➢ Mass: 12.49 tons
- > TPC
 - → Based on Resistive MicroMEGAs
- Calorimeter
 - KLOE calorimeter installed with magnet
- Magnet: 0.6 Tesla

The Software Stack

- ➢ EDepSim
 - → The 3DST (and TPC, &c) geometry from DUNE-nd ggd
 - ➤ Models energy deposition in the detector
- ≻ ERepSim
 - Simulates the scintillation, fibers, electron drift, sensors, electronics, and DAQ
 - Handles multi hit electronics, currently using an idealized multi-hit ADC/TDC with simplified sensors
 - → Calibration is simulated
 - i.e. "Digitize" and then "Calibrate" the electronics
- Base Libraries:
 - ➤ Software stack is being implemented as a series of stand-alone tools
 - → Goal is to remain as agnostic as possible about the computing environment.
- Reconstruction
 - → Largely follows from the T2K Super FGD event reconstruction
 - → Called "Cube", but primarily depends on the existence of 3D hits.
 - Produces fitted tracks, clusters and vertices (not saved yet)
 - The reconstruction includes an event display to diagnose and visualize reconstruction results
- Physics Analysis Tools

ERep-Sim The Energy Response Simulation

3DST Model in ERepSim

Response

- → Tuned to SuperFGD beam test [arxiv.ins-det:2008.08861]
 - Produces about 200 pe per cube
- Cube-to-cube light transparency tuned to SuperFGD beam test data
- Attenuation taken from measured Kuraray WLS fibers, fibers are not mirrored
- Scintillation timing is exponential [6 ns (fast) and 11 ns (slow)]
- → Birks saturation is not simulated (assumption is that it can be calibrated).
- Sensor
 - → Assume an SiPM with 25% photon detection efficiency
 - → Output timing jitter is 100 ps.
 - Output charge jitter is negligible, does not include effect of multiply hit pixels
 - → Dark currrent rate is 100k pe/s (nominal for T2K SuperFGD)
 - Negligible effect with a 2.5 pe threshold
- Electronics and DAQ
 - → Uses a Multi-hit TDC with an ADC
 - → TDC
 - > Threshold is 2.5 pe (tunable), with time step of 0.5 ns (tunable)
 - → ADC
 - Integration window is 50 ns with 10 ns dead time (both tunable)
 - Digitization is 10 counts per photo-electron equivalent impulse (tunable)
 - Calibration uses ideal calibration coefficients (changeable)

01/18/21

McGrew -- 3DST Reconstruction

TPC Model in ERepSim

(work by P. Granger)

- Response
 - Energy deposition spread uniformly along each track segment
 - Track individual ionization electrons,
 - Drift velocity is 78 mm/microsecond
 - Charge position spreading in foil simulated as Gaussian spread
 - > Time spreading not currently simulated
 - Lateral and longitudinal diffusion is small compared to, so ignored for simplicity (easily implemented within frame work)
- ➤ Sensor:
 - Pad and amplification is extremely simplified
 - Current passed directly to digitzation
- Electronics and DAQ
 - → Each pad uses the DAQMulti class
 - Nominal 100 ns integration window,
 - Integrate as long as signal is above threshold
 - → Hit time is the average current arrival time for the pad
 - → Each hit has the position of the pad, and the arrival time of the charge

ECal Model in ERepSim

(Pass-through of sand-stt results)

- Response
 - ➤ Implemented in sand-stt
- Sensor
 - ➤ Implemented in sand-stt
 - ➤ The sand-stt simulation assumes a 400 ns integration window
 - Time of hit comes from rising edge of signal (15% constant fraction)
 - Charge of hit comes for sum oveer 400 ns
- Electronics and DAQ
 - → Copy the information in the tDigit tree "cell" branch to ERepSim output
 - Assign hit positions at each end of the cell (tdc1 and tdc2 at opposite ends of the cells).
 - → Augment the hit identifier to specify the end of the cell

The Flow of the Reconstruction

McGrew -- 3DST Reconstruction

Building Cubes (voxels) from Fibers

- Time Slicing: Collect hits from one interaction
 - → Break 2D hits into groups separated by more than 40 ns.
 - Algorithm not optimal when there is noise (a fixed time window is better)
 - Should be optimized, but for now, the analysis isn't very sensitive to it.
 - Notice that electrons from muon decay are "just another track"
- 3D Hit Building:
 - → Assign a "cube" to every possible three fiber combination
 - > Hits are built by "time slice", so 2D hits in different time slices are not considered
 - > Time and Charge are assigned to each cube based on event topology
 - Information for each 2D are available in the 3D hit.
- DBScan:
 - → Applied after cubes are fully reconstructed to simplify later reconstruction
 - Select simply connected groups of hits
 - Use the geometric distance between cubes
 - > Breaking criteria
 - More than one neighbor within 1.6 cm (i.e. collect all simply connected cubes)

Voxels From TPC and ECal Hits

\succ TPC voxels

- ➤ For each TPC pad
 - Correct X position to correspond to time zero
- Drift velocity is 0.078 mm/ns or, 78 mm/ μ s
- Hit building does not specifically treat charge sharing
 - > That means a single track will usually be "three pads wide"
- Hit X, Y and Z size
 - > Y and Z size based on pad
 - > X size based on the "signal time" over threshold.

ECal voxels

- ➤ For each cell
 - Only accept pairs of TDC1 and TDC2 within a 35 ns time window
 - Up to a 6 m light path difference
 - Speed of light is 170.8 mm/ns
- Calculate X position based on difference between TDC1 and TDC2
 - The hit charge is the sum of ADC1 and ADC2

CubeRecon for the TPC

- Required Changes for TPC
 - Modified Distance metric for DBScan and Minimal Spanning Tree
 - Distance is calculated for the closest approach between the hits
 - Modified for 3DST as well
 - equivalent to old 3DST distance minus the cube size
- Did not modify track fitting for TPC
 - The stochastic track fit assumes a 400 MeV/c muon passing through a scintillator
 - → More multiple scattering than there should be
 - → Curvature is not fit: Low energy tracks are fit as "kinked" track segments
 - Assumption: The stocastic track fit is part of pattern recognition, final fit will be done by the TPC full track fit.

Reconstructed TPC Events

- Result of CubeRecon applied to TPC, 3DST, and ECal (on left-side)
 - TPC Tracks shown in white.
- Left: Full spill, but only KLOE events
 - This zooms for one interaction, no interactions were culled. ECal hits are shown, but no clustering is applied

 $\stackrel{>}{\sim} \text{Right: Muon, pion and } \pi^{\text{o}} \text{ with no magnetic field}}_{\text{McGrew -- 3DST Reconstruction}}$

Summary

- The baseline 3DST and TPC reconstruction is ready¹ as input for physics studies
 - Tracks with fitted results
 - Position, direction, length, "dE/dX" vs position on track, total energy deposition, path in detector
 - Minimum track length is 4 cubes
 - → Clusters
 - Small groups of hits isolated in space and time.
 - Position, direction, shape, total energy deposition

¹ Professional driver on a closed track. Your mileage may vary. Past performance does not indicate future results. Unintended uses may result in injury. Do not ingest Avoid contact with eyes. This is not a toy. Keep away from children. Please handle safely Use at your own risk.

Backup Slides