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Shower characterisation
• Shower characterisation == the bit you do 

after the pattern recognition


• Shower reconstruction is hard, particularly 
in a LArTPC


• The difficulty is frustrating because you 
primarily only need to know a few key 
pieces of information for physics analyses:


• Start position 

• Initial direction 

• Energy 

• dE/dx
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TRACS becomes 
PandoraModularShower

• I presented a couple of talks on the Tool-Based Reconstruction Algorithm for Characterising 
Showers (TRACS) in 2019


• A shower characterisation module


• Outsources all calculations to hot-swappable ART tools e.g. specific tool for calculating 
dE/dx, shower direction etc.


• Incredibly easy to write your own targeted tool for calculating a particular property


• (As far as I am aware) the only shower characterisation module that is capable of 
calculating —all— features of a recob::Shower


• After discussion with Pandora, we’ve come to the agreement that TRACS would:

1. Be moved from larreco to larpandora

2. Be rebadged as PandoraModularShower

3. Replace the old PandoraShower characterisation module, but experiments would need 

to opt in to this replacement


• The rest of this talk details configuration of PandoraModularShower for the DUNE far detector 
and, where relevant, compares to the older PandoraShower characterisation module
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Chosen toolset for calculating dE/dx in 
PandoraModularShower

• Reconstructing dE/dx from the shower’s initial track stub 
is the hardest feature of a shower to characterise


• I’ve configured two separate toolchains to estimate dE/dx 

1. ‘Crude’ toolchain


• Take first X cm of shower to be initial track


• Calculate median dE/dx using using shower direction, 
assuming no deviation


• Returns a dE/dx value almost always

2. ‘Finessed’ toolchain


• Find initial track by incrementally growing a track seed


• Fit a smooth trajectory 


• Calculate median dE/dx using local trajectory points


• It is more likely that this toolchain fails


• Finessed dE/dx values takes precedence 

• Bayesian optimisation has been used to tune the 14 
parameters in the toolchains
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Quick aside: Bayesian optimisation
• Bayesian optimisation is a method for finding the global maximum of an N-dimensional 

function


• The N-dimensional function is modelled as a Gaussian process


• Measurements of the unknown function are made, updating the Gaussian process


• Acquisition function determines where to search after a measurement has been made


• The bottom example, finding peak density in a gold seam, taken from https://distill.pub/
2020/bayesian-optimization/
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Quick aside: Bayesian optimisation
• After a measurement is made, (the black point), a new 

measurement needs to follow


• The maximum position of the acquisition function dictates the new 
measurement position (the red point).  The acquisition function I’ve 
used for tuning the dE/dx reconstruction is:


• α(x) = μ(x) + λσ(x)

Gaussian 
mean

Exploration parameter 
(hand picked)

Gaussian width

Iteration 0

from https://distill.pub/2020/bayesian-optimization/
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Tuning the dE/dx reconstruction 
using Bayesian Optimisation

• The main use of a shower’s dE/dx is to separate 
photons and electrons, so the tuning should 
reflect that


• The tuning metric I am maximising is


• Num. selected electrons X Num. rejected 
photons after applying the optimum dE/dx cut


• The general idea is to:


• Repeatedly run PandoraModularShower over 
a sample of particle gun electrons and 
photons (0.5-5.0 GeV energy range)


• For each reconstruction pass, find the dE/dx 
cut value that maximises my metric


• Return that metric to the Bayesian Optimiser 
and let it decide the new reconstruction 
parameters for the next reconstruction pass


• RHS plot is tuned reconstruction (+ some hand 
tweaking of the params.)
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Running PandoraModularShower’s dE/dx 
reconstruction over fully oscillated νe LBNF events

• Separation not as good


• Difference is sculpted by the photon 
spectrum


• A future tuning iteration would use a 
different photon spectrum (or just use 
νe events)


• No amount of tuning alone will get rid 
of the 2 MeV/cm photon peak, 
however 


• Performance is still better than the 
older PandoraShower module


• PandoraShower does not 
reconstruct dE/dx
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Shower direction reconstruction 
• The old PandoraShower applies a 

Principal Components Analysis (PCA) 
to the shower which infers the 
direction


• I’ve tested tools in 
PandoraModularShower that uses 
either the PCA direction OR the 
direction of the initial track


• Which direction is picked depends 
on the difference between the PCA 
and track directions


• It seems like using only the PCA wins 
out here, so we’ll go with that for 
PandoraModularShower’s toolset as 
well…

All reconstructed showers 
in νe LBNF events
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• The old PandoraShower takes the 
Particle Flow Particle’s (PFP) 
position projected onto the 
shower direction line as the start 
position 


• I’ve tested tools in 
PandoraModularShower that 
takes the PFP position as the start 
position (no projecting)


• It looks like not projecting the start 
position has the more optimal 
performance here, so we’ll use 
that in PandoraModularShower’s 
toolset…

All reconstructed showers 
in νe LBNF events
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Shower energy 
reconstruction

• The chosen 
pandoraModularShower 
tool sums up hit charge 
per plane


• Corrects for attenuation 
and recombination and 
then converts to energy


• The plot compares 
reconstructed energy in 
collection plane to the 
total energy of the true 
electron
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Proposed toolset for 
PandoraModularShower

• Direction: calculated using PCA-only


• Start position: the position of the PFP (no projecting)


• Energy: Summed and corrected hit charges


• dE/dx: The crude + ‘finessed’ toolchain described on previous slides


• I propose that we now start to replace the old PandoraShower 
reconstruction with the new PandoraModularShower reconstruction with 
the above toolset


• I highly suggest that we keep the data product label as ‘pandoraShower’
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Summary
• Highly modular shower characterisation module 

(PandoraModularShower) now included in the larpandora 
repo


• I’ve tuned PandoraModularShower using particle gun 
showers in the DUNE far detector via Bayesian Optimisation


• By comparing performance with the older PandoraShower 
characterisation module, a toolset for 
pandoraModularShower has been identified


• The configured PandoraModularShower can now replace the 
older PandoraShower reconstruction when we’re ready
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