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Topics

Concepts in responses for simulation and signal processing.

Requirements and progression of LArTPC detector response models.

Review of performance of Wire-Cell Toolkit’s implementations for wire
detectors.

@ Challenges for responses for strips+holes anodes and performance of
Wire-Cell Toolkit with 50-L detector data.
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R: modeling LArTPC ionization response

For x € “det” (real detector) or “sim” (detector simulation):

Sy drifted ionization charge distribution (“signal”),
Ry detector response in anode to drifting electrons,
Ny non-signal related “noise”,

M, a measurement (eg ADC waveforms on channels).

Simulation is a convolution (with R 4. or Rgjm):

My =N+ R, ® S

Signal processing is (mostly) a deconvolution with R, to get
reconstructed signal:

S)/(: 5p®R;1®MX

(more details in backups)
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Requirements on responses

We then must choose Rm and R, and wish to minimize the per-event
difference between reconstructed and “true” ionization signal in the sim:

|S;im - Ssim|

and simultaneously minimize an ensemble difference between
reconstructed signal over similar event samples from det and sim:

‘(S(,iet> - < ;im>‘

This obviously implies we want:

Ret = Rsim ~ Rsp

IOW, we want Rin as close to reality as computational power allows and R, as close
to reality tempered by our limited basis of measurement M (ie, channel-level info).
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Historical Progress of Response Sophistication

R1D N RZD RZ 5D R3D

LArSoft — Wire-Cell Toolkit (with wires) — WCT (with strips+holes) — ???
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1D response model: R'P(x)

@ Response depends on 1D coordinate (drift direction).
» Sim and SP assume current only in wire nearest to drifting electron.

Pros:

e Computationally fast and algorithmically easy.
o Still available for use in LArSoft SP and sim.
- Ssim| ~0

e For sim, strongly minimizes: |S., .

Cons:

e Forsim, the |S!

o For data, avg reco signal differences [(S/,,) — (

— Ssim| & 0 minimum is “too perfect”.
/
sim

im
)| are large.

» The “long range induction” effects can not be ignored.
» MicroBooNE data demonstrated this model is too simplistic.
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Wire-Cell 2D response model: R*P(x, p)

@ Response depends on 2D coords (drift + pitch directions).

» May induce current on range of nearby wires (1 =+ 10) or strips (1 £ 5).
> Rgm varies w/in one wire region (10 sub-pitch bins).
> Average over each wire region: (RZD (x, p))|, — R2(x)

Pros:

e Well minimizes both |S!

o Validated, optimized implementation in Wire-Cell Toolkit.
> Now established as default in most LArSoft uses.

im — Ssim| and [{Sg,) — (Sgim) |-
@ On average, works well on some non-2D geometries (eg wires).
Cons:
o Field response calculations more difficult than 1D, but reasonable.
@ Sim and sigproc algorithms more complex, somewhat slower than 1D.

@ The more 3D the geometry = more imperfect is a 2D model.
» Particularly, strips + holes stress the model.
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E MicroBooNE

Tim
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(b) 2D deconvolution, 5° < 6, < 15°.
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(g) 1D deconvolution, 50° < 6, <70°.
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() 2D deconvolution, 50° < 6., <70°.

(d) 2D deconvolution, 15° < 6., <30°.

1D SP vs Wire-Cell 2D SP on MicroBooNE det data

Plotted: average reconstructed ionization
signal S;.” and S}2P vs sample time for

ensemble of tracks in four angle bins.

2D Wire-Cell signal processing is able to
correctly recover identical average track reco
signal S2° independently from each wire

plane.

Exploit LArTPC technology for tomography!

lonization Electron Signal Processing in Single Phsae LArTPCs II.
Data/ Simulation Comparison and Performance in MicroBooNE
MicroBooNE Collaboration arXiv:1804.02583, JINST 13, P07007 (2018).
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http://arxiv.org/abs/1804.02583
https://doi.org/10.1088/1748-0221/13/07/P07007

2D Field Response Calculations - Wires

2D slice across 3D geometry

P plus some fictional alignment!
Wires are infinite, parallel
and uniform, and there are
no edge effects.

Drift paths in applied E-field.

Per-conductor weighting field.

126 drift paths per plane:
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1+ 10 wires, 6 “impact

.. » . 1 th
positions” per wire at 75
pitch, exploit translation and

mirror symmetries.

2D (x, p) drift paths and example U-wire weighting field for
ProtoDUNE-SP calculated by drifires/Garfield++
(we are migrating from the venerable GARFIELD).

Instantaneous induced current: I(t;) = qW/(F) - ¥(7); T = 7(;); ti = to + iAt

@ W: weighting field is E-field with conductor-of-interest at 1V, all else at 0V.
@ ¥ drift velocity along path 7 calculated from LAr physics and solving for applied E-field.

@ g aninfinitesimal element from the distribution of drifted ionization electrons at the start of a drift path.
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https://github.com/brettviren/drifires

Wire-Cell 2D response for MicroBooNE

Rim(x, p) R (x)

(drift vs impact position) (drift vs wire region + select wire regions)
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More Wire-Cell NF/SP performance on MicroBooNE

After Noise Filtering _1-D Deconvolution

2-D Deconvolution
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lonization Electron Signal Processing in Single Phase LArTPCs I. Algorithm Description and Quantitative Evaluation with MicroBooNE
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Simulation MicroBooNE Collaboration arXiv:1802.08709, JINST 13, P07006 (2018).

Signal processing on
MicroBooNE detector

data event:

@ (a) WCT noise filtered,

@ (b) 1D SP and
@ (c) Wire-Cell 2D SP

Similar performance on
ProtoDUNE-SP.

J
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http://arxiv.org/abs/1802.08709
https://doi.org/10.1088/1748-0221/13/07/P07006

Challenges of strips+holes for R

S+3

Strips+holes strongly violate 2D model
@ non-parallel strips between the planes

> (a “feature” shared with wires) 542
@ non-uniform along their length.
Extra challenges: s+1

e ind/col hole patterns differ between

strips-in-plane and strips-across-planes .o
@ hole-pattern has some finite repetition distance

> 50-L has a 2-hole repetition,
> longer repetition for some 3-view designs. s-1

Small bonus: fields drop faster with strips than wires

@ 1=+ 10 wires — 1=£ 5 strips. 52

50-L detector collection stips+holes —
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2.5D model for strips+holes R?3P — R2D

sim,sp O
S+3
“2.5D” trick @
@ Construct slices across strips spanning the repetition distance. o+ O
@ Eachslice defines one R?C problem domain. =T ...
@ Calculate per-slice 'Rgh[.)ce, o1 O
@ Take average over slices to get Rii?n,sp
New problems for calculating R25,: @
@ How best to define and combine slices? *° O
@ How many slices are needed?> o
@ How to exploit symmetry to reduce calculation? < O
@ How wrong is this on average and in detail?
> tests ongoing @
S-2

Chosen slices shown as vertical lines —>

(details how we use GARFIELD to perform calculation in backups) 5.3
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50-L test detector: R?°P — R?,%

The PCBro (PCB anode readout) package processes GARFIELD output to form the per-slice
responses to produce WCT-compatible R?,-,e,ysp as linear color scale.

(induction plane, slices 0, 1 and average)
(collection plane, slices 0, 1 and average)

ind plane, slice:(0), zoomed

ind plane, slice:{1], zoomed ind plane, slice:(0, 1), zoomed
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Slice 0. Slice 1. Slices 0.5 % (0 + 1).
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https://github.com/brettviren/pcbro

Next 3 slides

tl;dr: focus on bottom two plots.

To better view tails we use “+log 10” scale for 50-L’s R20,.
Each slide shows a slice-average or a specific slice:

@ highlight slice 0
@ highlight slice 1
© average over both slices

50-L detector only has 2-views: induction + collection.
The “U” and “V” labels indicate different forms for the induction plane info.
The “W” is always the collection plane info.
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Slice 0
50-L R2D

@ U is average over both
induction slices

@ Vs induction slice 0

@ W is collection slice 0
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Slice 1
50-L R2D

@ U is average over both
induction slices

@ Vs induction slice 1

@ W is collection slice 1
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Induced Current U-plane
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50-L raw data and WCT sigproc with Ri’fD

The PCBro package also provides a 50-L raw data decoder and hooks to run
Wire-Cell Toolkit signal processing on 50-L data.

50-L raw data event Same event after Wire-Cell signal
PCBro data decoder processing
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Note, the “double induction” plane is merely duplicate to fit nominal WCT assumptions of 3 planes.
The PCBro package uses this “extra” plane to test different field responses in the same job.
In production processing, we need not waste CPU on the duplication.
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https://github.com/brettviren/pcbro

50-L WCT simulation of *Ar “blips”

Andrea Scarpelli
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Samples ¥ Ar energy spectrum scanned from arXiv:1705.05726v1.
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https://arxiv.org/abs/1705.05726

50-L data / WCT sim comparison - ¥ Ar “blips”
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3-view strips+holes

At least 3 views are needed to well exploit the
tomographic power of LArTPC!

Various design, installation and response challenges
for a 3-view strips+holes detector.

One possible design adds “diagonal” strip with
“skewed” hole pattern. —»

@ R may require N > 2 slice average: “2.7D ... 2.9D”

P Have scheme to produce data-driven optimal weighting of
slices. Non-trivial, but there if we need it.

@ Strip angle is such that no slice goes only through hole
diameters.

> Further biasing of the “2.x D” approach?

@ Even with 3D, prefer to maximize regularity of patterns.

Design wish: 3-view isosceles or hexagonal strip+hole
pattern. A novel hexagonal design by Bo looks nice!

15t induction plane readout
A\ 1stinduction plane read
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From Bo’s presentation at the recent
DUNE collab call
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https://indico.fnal.gov/event/46396/

Summary and some next steps

e Wire-Cell’s use of R22 s improves over R'P as demonstrated with

MicroBooNE and ProtoDUNE.
The R?5PD trick brings Wire-Cell support to 50-L strips+holes det.

» Eyeball SP event display and average raw waveform tests look okay.
» These average test metrics may hide some variational problems.

Unclear (yet) “2.5D” trick is enough esp. for 3-view designs.
» Require WCT SP/sim and test detector data to confirm.

The more regular the strip+hole pattern the better!

> isosceles/hexagonal 3-plane designs for vert. drift det, please!
> avery new design already in this direction!

@ Precision tests to check for correct variations vs position even more
important for strips+holes.

In general: we will continue to improve support in Wire-Cell Toolkit for
strip+hole test detectors and for the eventual DUNE VD module(s)!
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Conceptual LArTPC Simulation

Real detector (and its simulation) produces an event via a convolution of:

S an ionization charge distribution (“signal”) with
R a detector response to drifting electrons, plus
N all non-signal related “noise”, producing

M a measurement (eg ADC waveforms on channels).

My =Ny + Ry ® Sy
With x = “det” (real detector) or “sim” (detector simulation).

knowns M get, Misim, Ssim and Niim (modeled), R, (but imperfect).
unknowns R ger, Sder and Nye;.
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Conceptual LArTPC Noise Filtering

Noise filtering is a transformation F.r on the measurement:

My = M = Fpp(My)

designed to strongly remove excess or external noise and potentially
reduce inherent noise leaving residual noise ny:

an(Nx) — N <K< Nx

while attempting to leave the signal term approximately invariant:

F,,f(RX ® SX) ~ R, ® Sy
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Conceptual LArTPC Signal Processing

Signal processing attempts to recover a good approximation of Sy from M,.

It uses a deconvolution of the measure with a response and with added
filters F, to further suppress the residual noise term.

S, = Fp® RS? ® My, x € {sim, det}

We may not use the detailed R, here as it is in terms of the detailed,
inaccessible “true” signal coordinates so we use an average R, (ie,
per-channel vs sample time matching M,).

Note: for induction channels, RS? diverges at DC, thus amplifies residual, low-frequency noise.
To counter, Fyp includes special algorithmic high-pass “filters” called signal region of interest (signal-ROI)
and local baseline correction.
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Conceptual LArTPC Responses

We then must choose Rm and R, and wish to minimize the per-event
difference between SP and “true” ionization signal in the sim:

|S;im - Ssim|

and simultaneously minimize an ensemble difference between SP signal
over similar samples from det and sim:

‘(S(,iet> - < ;im>‘

This obviously implies we want:

Ret = Rsim ~ Rsp

IOW, we want Rin as close to reality as computational power allows and R, as close
to reality tempered by our limited basis of measurement M (ie, channel-level info).
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The Test Metric Caveat

So far we use metrics sensitive to response averages over space.

e Demonstrates WCT R?P good on average for SP(sim) ~ SP(det).

» Does control for 3D direction, important variation for SP efficiency!

@ May not be sensitive to imperfect detailed variations in R?,.L?Mp

» Eg, is there SP(sim) # SP(det) bias/resolution at specific locations?
» Particularly strip+holes have large variations along strip direction.

* (will show)

o Examples of more precise metrics to apply in future det vs sim:

» Signal matching between planes with *Ar or other “blips”.
» Detailed comparison of dE/dX with tracks from full 3D reco.
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More Wire-Cell performance on MicroBooNE: NF

Before noise removal

Wire-Cell software noise 2 =F
. . . E I
filter applied to MicroBooNE P -
data event. B g
@ |
[ &
Noise Characterization and Filtering MicroBooNE  sier noise removal g
in the MicroBooNE Liquid Argon -
TPC MicroBooNE Collaboration - 2| -~
arXiv:1705.07341, JINST 12 P08003 ol 2 R .
(2017). po o "
):Vm

~—mw
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http://arxiv.org/abs/1705.07341
https://doi.org/10.1088/1748-0221/12/08/P08003
https://doi.org/10.1088/1748-0221/12/08/P08003

Wire-Cell signal processing on ProtoDUNE-SP data
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First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform.
arXiv:2007.06722, JINST 15 (2020) P12004.
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https://arxiv.org/abs/2007.06722
https://iopscience.iop.org/article/10.1088/1748-0221/15/12/P12004

The 2.5D trick applied to GARFIELD
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GARFIELD setup for 2D single-hole (Yichen Li)

Clever work-around to limitations of 2D and GARFIELD:

@ Single-hole, 2D geometry with strips constructed as array of
hundreds of “micro wire” sensing conductors —@_:@

> the L/R and A/B blocks work around some GARFIELD technical limits. so T
OHOl-
@ Manual labor intensive post processing .

P Catalog maps of drift paths on slice to single-hole geometry. E.: O O -
P Catalog micro wire selection criteria for each drift path. 51 —

P Longer the hole pattern repetition distance = more the effort. O @
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50-L data/sim checks t.b.d.

Other sources:
@ 1 MeV e- Bismuth source “blips”.
e MIP tracks in different direction bins.
Address “Test Metric Caveat” with more precise det vs sim comparisons:
@ SP ind/col ratio for “blips”, ideally = 1.0
@ Invariant values (eg, raw ind waveform integral = 0.0)

e Raw waveforms from “blips” as f(p)?
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Skewed hole pattern: 2.5D? 2.7D?

50-L: average tests look good for R%:°, eyeballing SP

event display looks good for Ri’,SD.

But, 50-L has fairly regular hole pattern.

New worry: 3-view’s “diagonal” strip with “skewed”
hole pattern. —

@ May need N > 2 slice average: “2.7D ... 2.9D”

P Have scheme to produce data-driven optimal weighting of -~ ¥//‘ \¥ / “\ / \
slices. Non-trivial, but there if we need it. 2N /7 TN/ mn
{ ) { { SV
. . \N11P% \H> / v
@ Strip angle such that no slice goes only through B NN es (
hole diameters. B WA VAND X
e - o N
P Further biasing of the “2.x D” approach? LS \B \
M AN
@ Even with 3D, prefer to maximize regularity of N (o i
_ N N
patterns. 7/ Y - ~
{ ) { 3 {
\ /A

.. Design wish: rectangular 2-plane or
isosceles/hexagonal 3-plane!

From Bo’s presentation at the recent
DUNE collab call
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https://indico.fnal.gov/event/46396/

So, why not R3P?

Some work in 3D exists.
@ Mostly for “near by” fields or “far fields” but for wires.

@ Far field 2D calculation takes minutes-hours, 3D calculations take
hours-days (using BEM, effectively impossible with FEM).

@ Strips+holes need finer meshing = more processing (than wires).

@ Longer hole repetition distance = more processing (than 50-L).
And, given R*P sim must contend with an explosion of data.

@ Riim drift paths per plane (some estimate/guesses)
> 2D wires: 126.
P 2.5D strips: O(100) for 50L, O(1,000) for skewed hole pattern

P » 752D
*  but at least results in “standard Rsim,sp!

> 3D: 0(50,000), and worse: old simulation must be thrown out.

3D simulation LARF
@ Same concepts as 2D sim, but need all new algorithms/code.

@ 2D sim exploits 10-way interlacing across common, wire-relative impact

positions in order to use 2D FFT + 10-way sum for fast convolution.

> How to even apply this trick in 3D? More variety along the strip direction will increase
interlacing = harder/slower calculation.
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https://indico.fnal.gov/event/46396/
https://github.com/brettviren/larf/

