

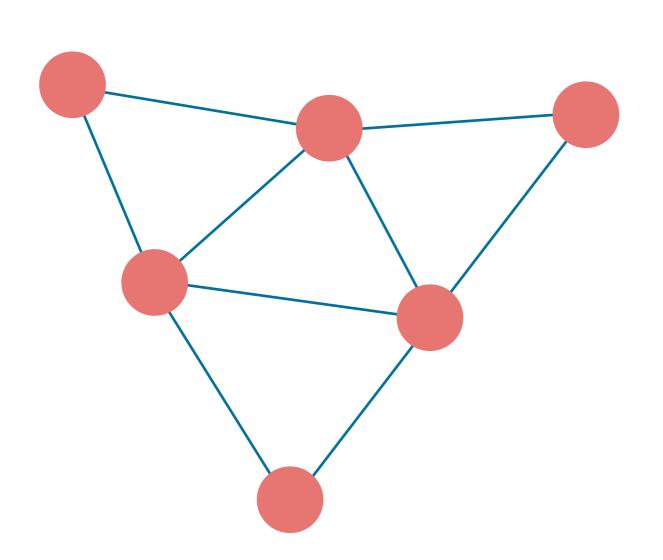
Funded by DoE through the Exa.TrkX project

Graph Neural Networks for Reconstruction in Liquid Argon Time Projection Chambers

Jeremy Hewes
DUNE reconstruction meeting
21st January 2021

Graph neural networks

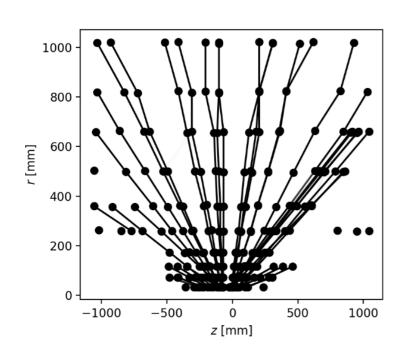
Describe information structure as a graph represented by nodes and edges.

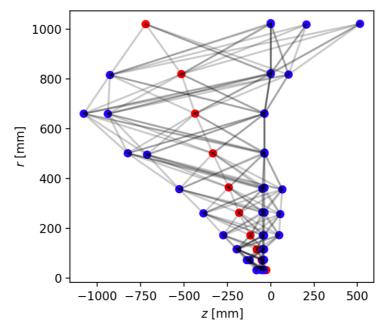


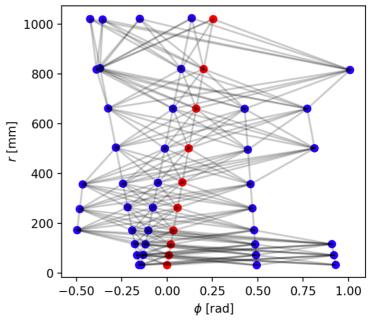
- Nodes are generalised as quantised objects with some arbitrary set of features.
- Edges describe the relationships between nodes.
- Perform convolutions on nodes and edges to learn relationships within the graph.
- Output is user-defined:
 - Classify nodes or edges.
 - Classify full graph.
 - Regression outputs.

Graph networks in HEP

- Investigating the use of Graph Neural Networks (GNNs) as an alternative to Convolutional Neural Networks (CNNs).
- Building on promising results from the HEP.TrkX collaboration using such methods for track reconstruction in the LHC world.
- Exa.TrkX project building on these results to further develop techniques in HL-LHC, and branch out to explore other detector technologies like LArTPCs.







Simulation

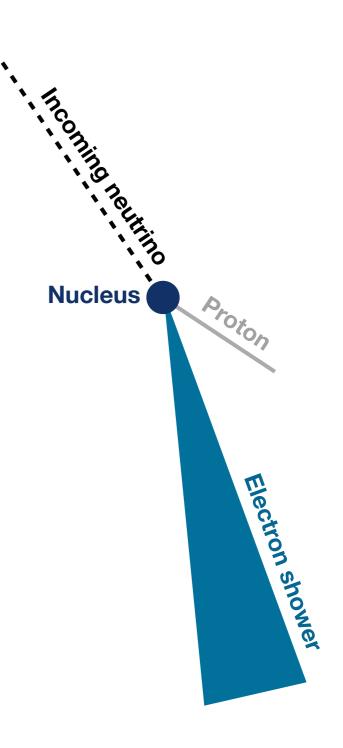
 Utilising two sets of simulation for these studies:

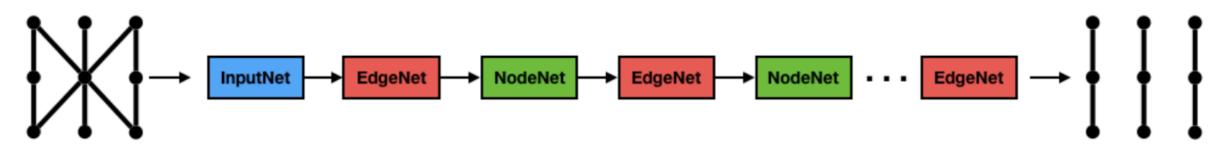
Atmospheric neutrino interactions

- Higher in primary neutrino energy (typically ~tens of GeV).
- Broad angular distribution.
- Higher occupancy events.

CCQE beam neutrino interactions

- Few-GeV energy.
- Neutrinos travel along beam direction.
- Typically "clean" interactions primary lepton (e,µ) and minimal hadronic activity.





arxiv:1810.06111

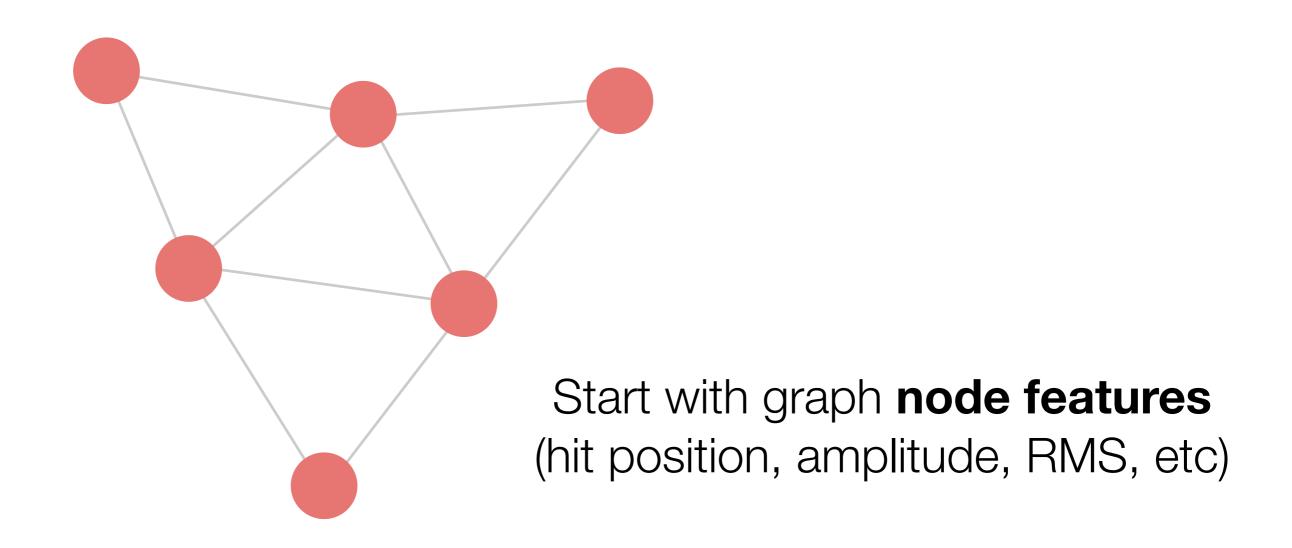
- Message-passing network aggregates information from neighbouring nodes across edges to form new features on each node, utilising an attention mechanism to weight up useful edges.
- Repeat the same network multiple times in order for information to travel further across the graph over multiple iterations (the "message passing").

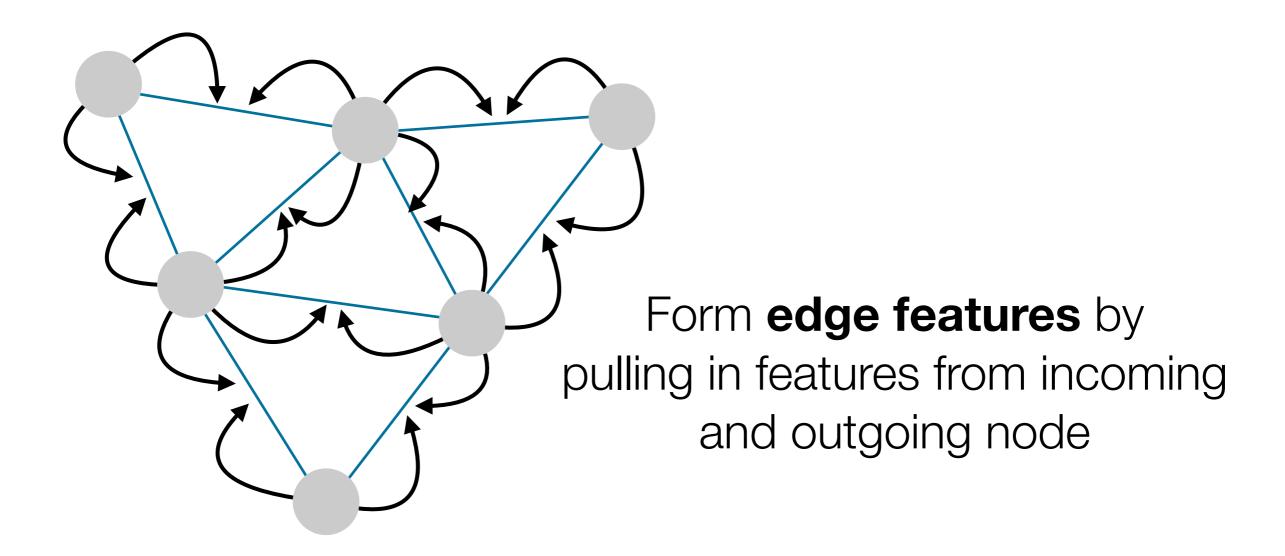
· Edge classifier:

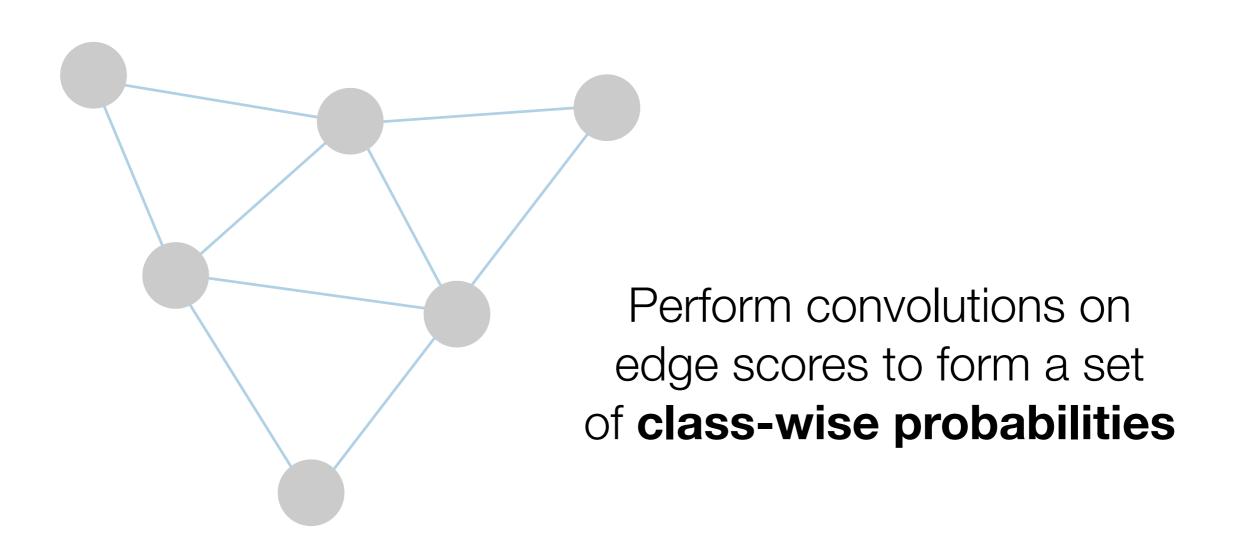
- Input for each node is the features of incoming and outgoing nodes.
- Two multi-layer perceptrons, using Tanh and sigmoid activations.
- Outputs sigmoid score on each edge.

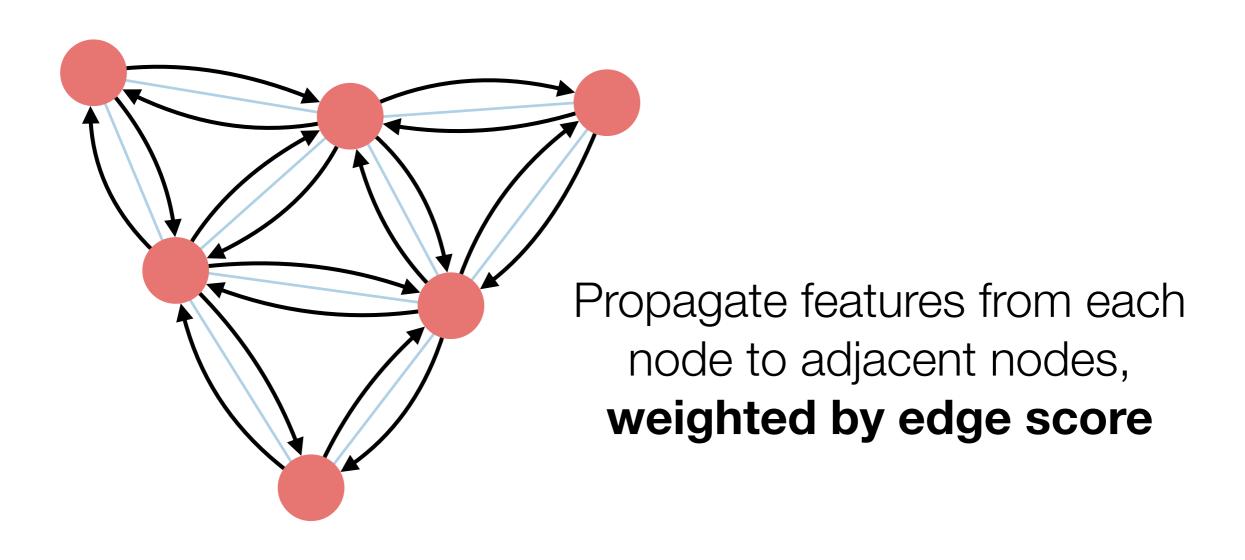
Node classifier:

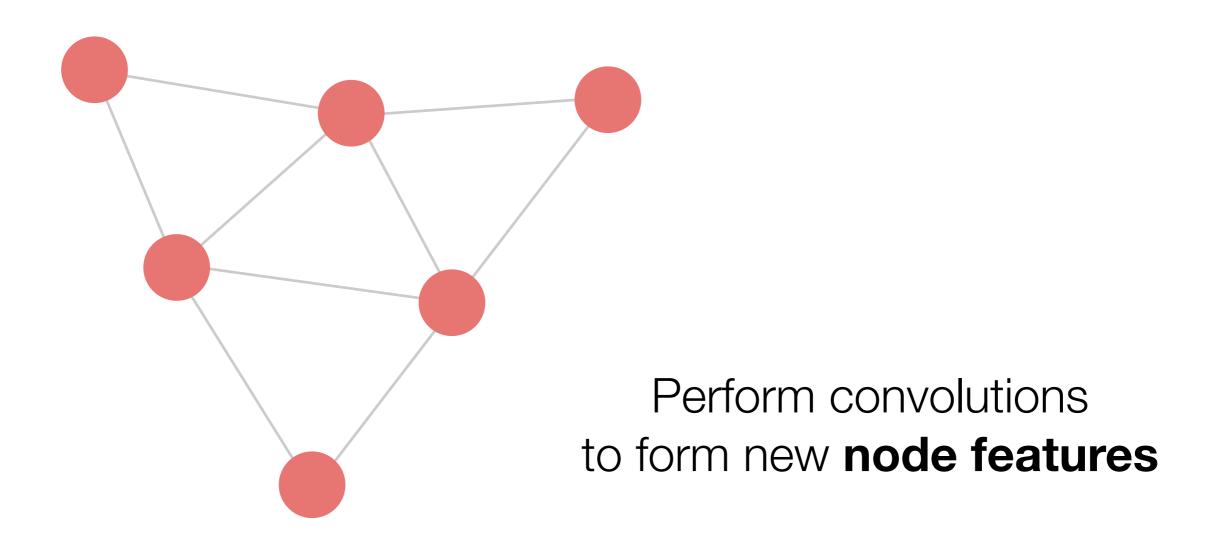
- Uses edge score to aggregate each node's features with incoming & outgoing edges as input.
- Two multi-layer perceptrons with Tanh activation.
- Produces new features for each node.



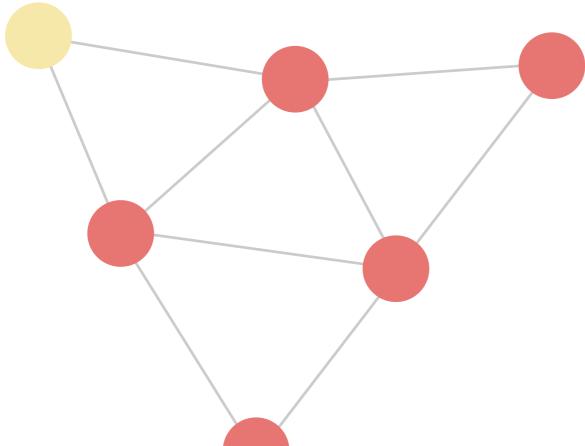






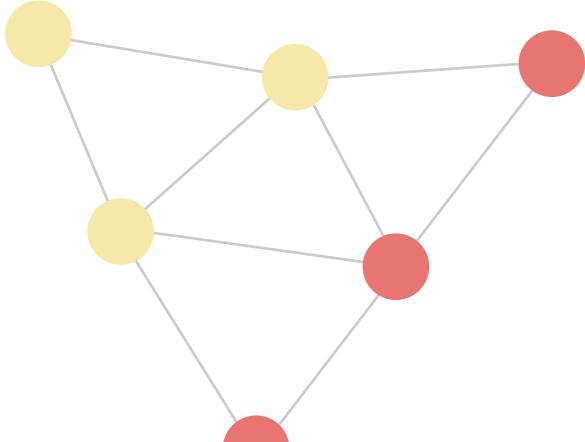


Repeating this process causes information to spread across the graph



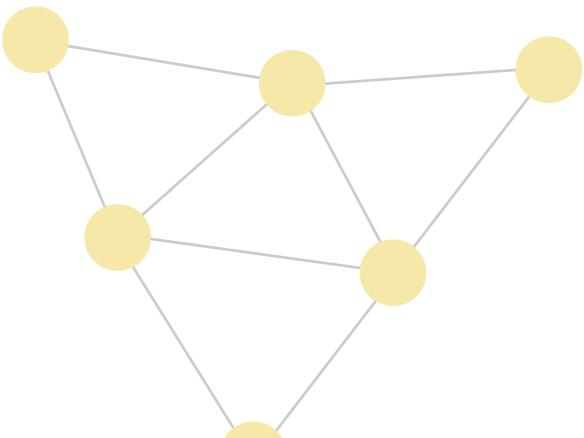
Iteration 0

Repeating this process causes information to spread across the graph



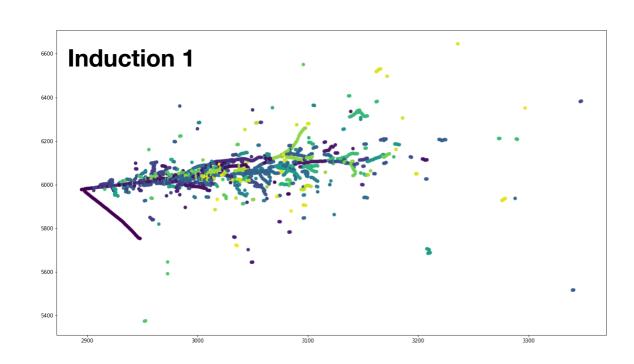
Iteration 1

Repeating this process causes information to spread across the graph

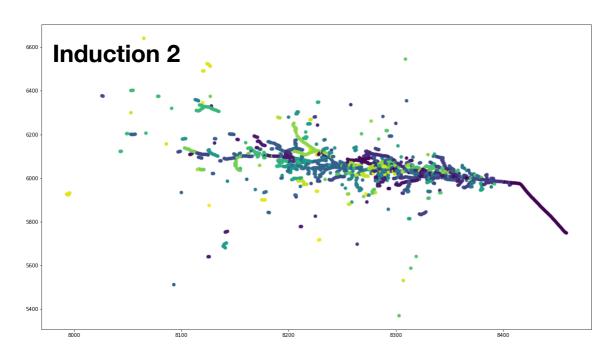


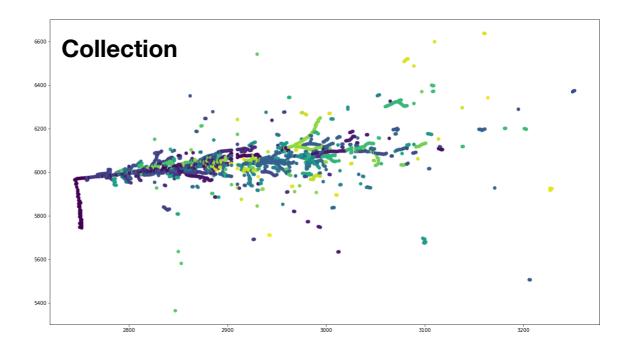
Iteration 2

2D reconstruction



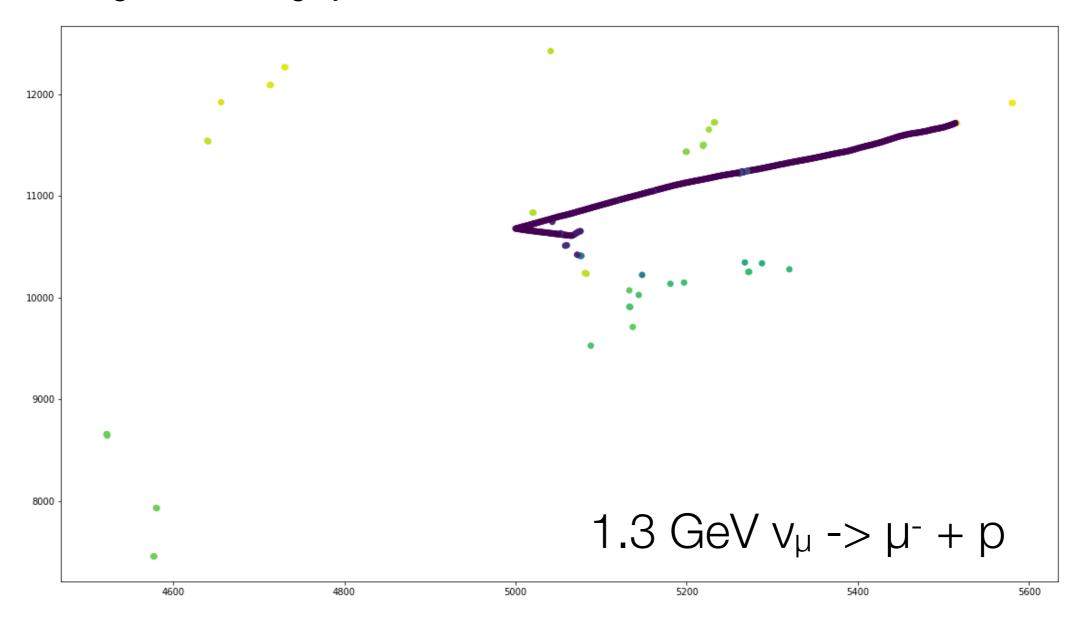
- Start with 2D representation and build up using graph network.
- Colour coded according to true simulated particle.
- Three 2D representations of the same 3D interaction.





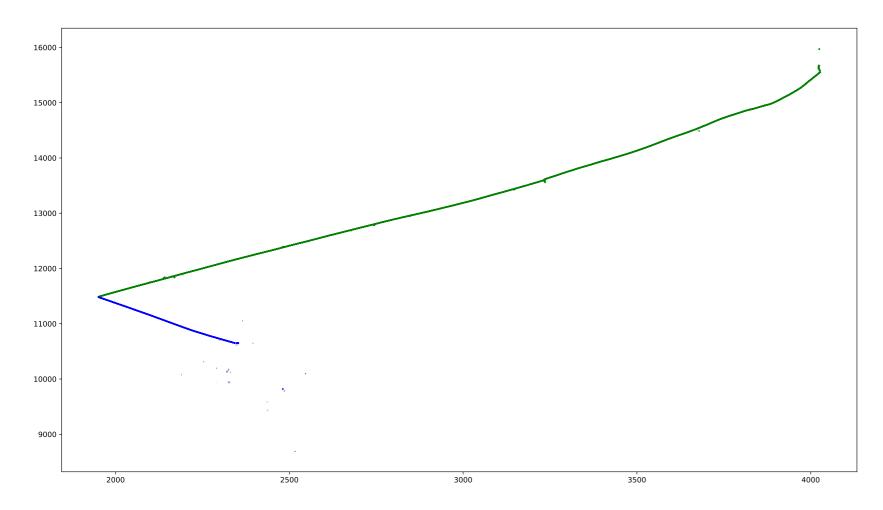
ν_μ graph construction

- Connect hits that are adjacent in wire and time with potential edges.
- · Potential edges drawn in grey between nodes.



ν_μ graph construction

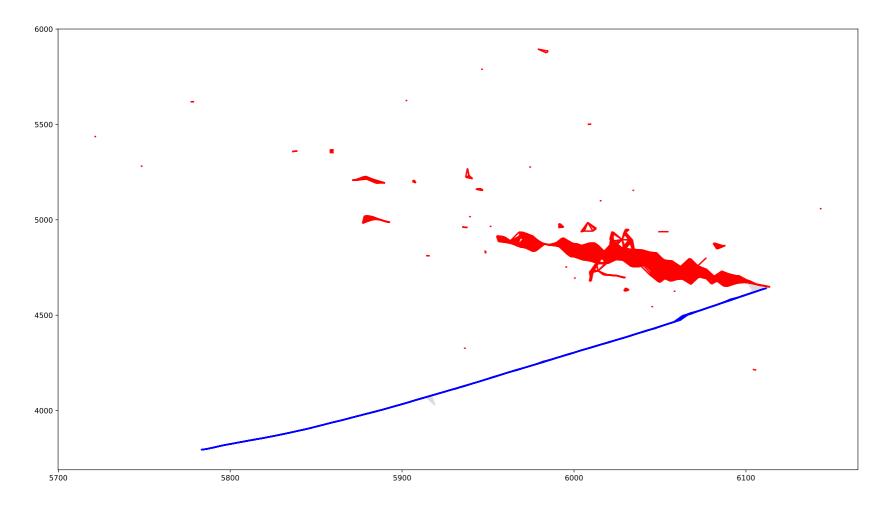
- Potential graph edges formed for hits in close proximity (5 wires & 50 time ticks).
- Potential edges then classified as hadronic, muon, shower or false as an objective for learning.



- Edges are classified as false if the two hits were not produced by the same particle in the underlying simulation.
- Muon edges are hits produced by the primary muon, shower edges by the primary electron, and hadronic edges are the remainder.

ve graph construction

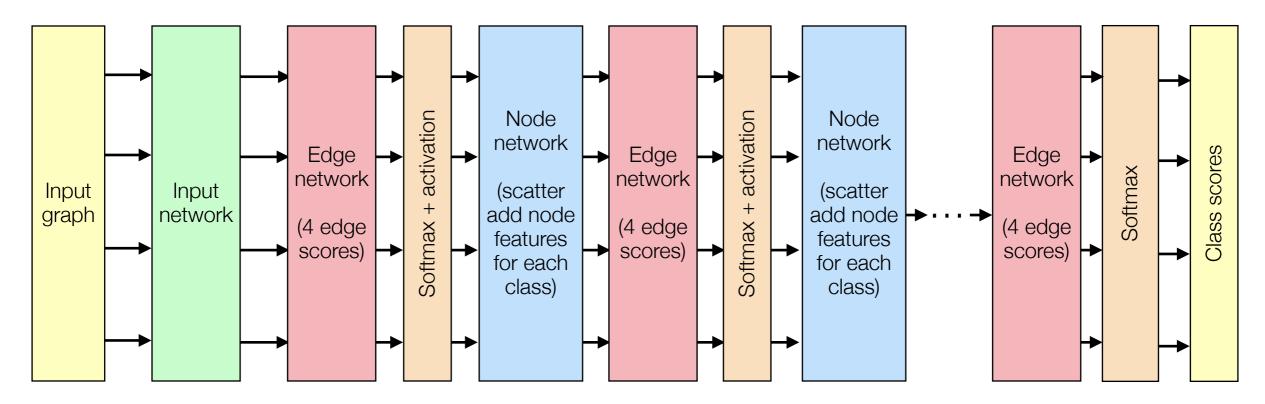
- Potential graph edges formed for hits in close proximity (5 wires & 50 time ticks).
- Potential edges then classified as hadronic, muon, shower or false as an objective for learning.



- Edges are classified as false if the two hits were not produced by the same particle in the underlying simulation.
- Muon edges are hits produced by the primary muon, shower edges by the primary electron, and hadronic edges are the remainder.

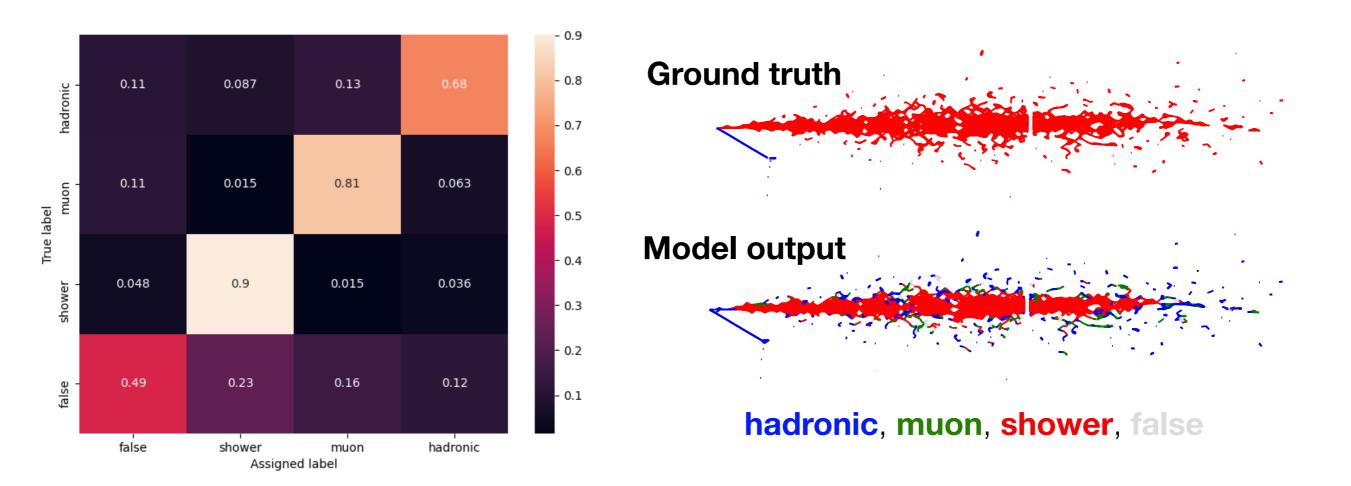
Multihead attention message-passing network

- Build on Exa.TrkX binary edge classifier.
 - Pass messages + form node features independently for each class.
 - Produce 4 edge attention scores on each edge.
 - Take the softmax of those edges with each iteration.
 - If an edge is strongly shower-like, the track-like classes will be weighted down accordingly.



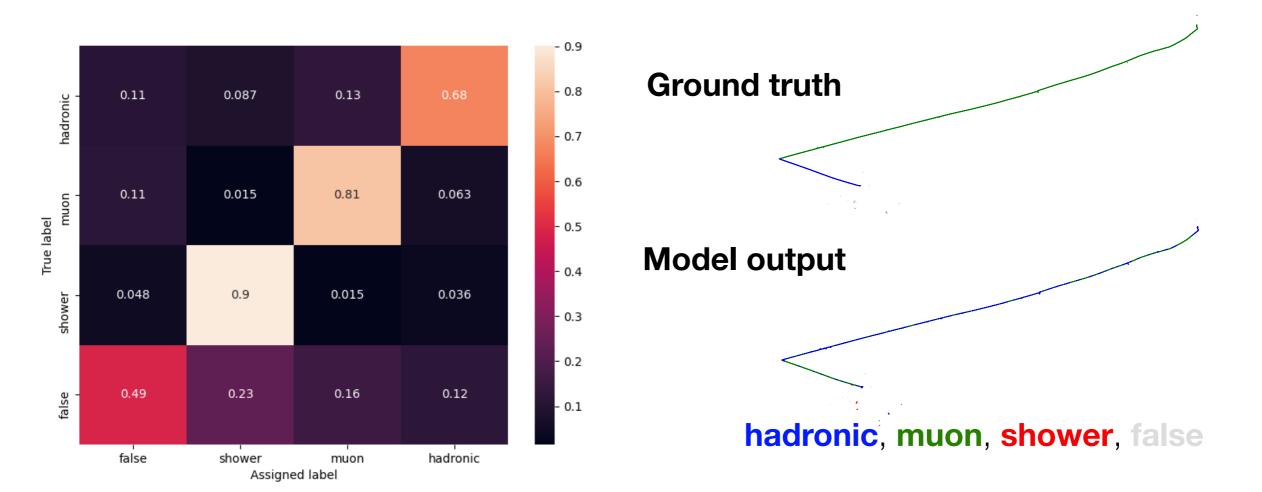
2D edge classification network

- Current iteration achieves 84% accuracy in classifying graph edges.
- Performs well on showers, but still room for improvement in tracks.



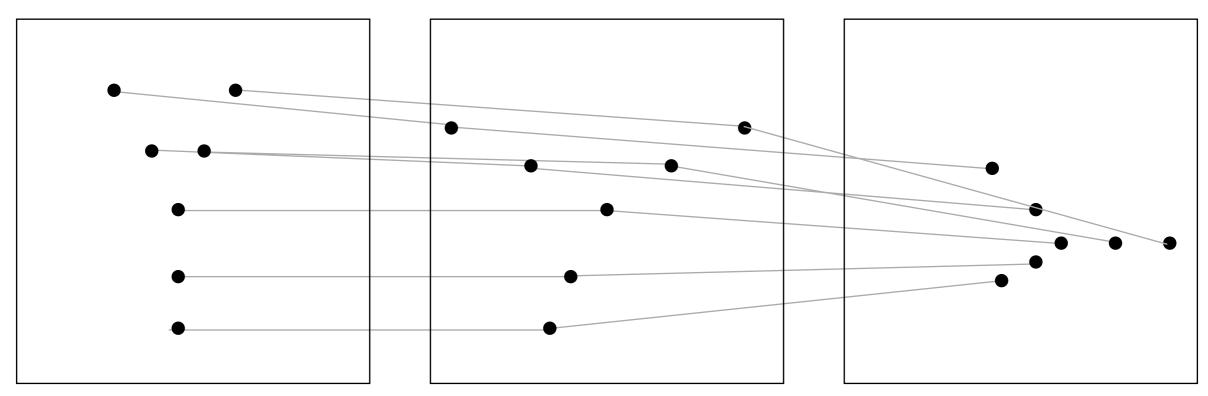
2D edge classification network

- Current iteration achieves 84% accuracy in classifying graph edges.
- Performs well on showers, but still room for improvement in tracks.



Next steps

- In current setup, the three views are categorised independently.
- Match hits produced concurrently in time to allow information flow between views.
 - Message-passing between planes may aid with clustering within each plane.
- Long-term goal: combine with heterogeneous graph nodes such as LArTPC optical detector system for time matching.



Next steps

- Edge classification was a natural fit for track-forming in HL-LHC.
- Clearly shows promise in neutrino physics too, but less well-suited to the problem of clustering hits into dense objects.
 - Need a scheme to collapse disparate classified edges into objects.
 - Objective function scores each edge independently, and doesn't have any wider context.
- · Considering newer techniques such as graph pooling and instance segmentation.
- Move beyond simple CCQE interactions to more complex event topologies
 - Build more sophisticated definitions of the ground truth.
 - Scale up from 2D representations to 3D.