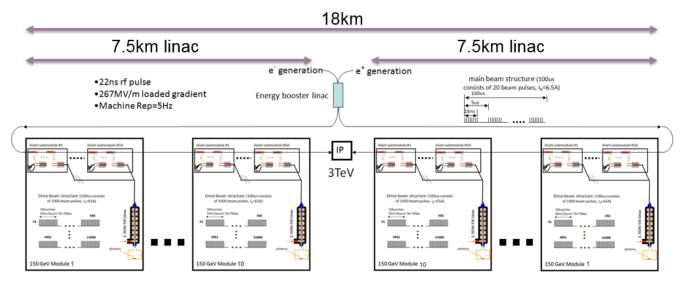


SWFA DEMONSTRATORS WITH INTEGRATED TECHNOLOGIES FOR FUTURE LARGE-SCALE MACHINES

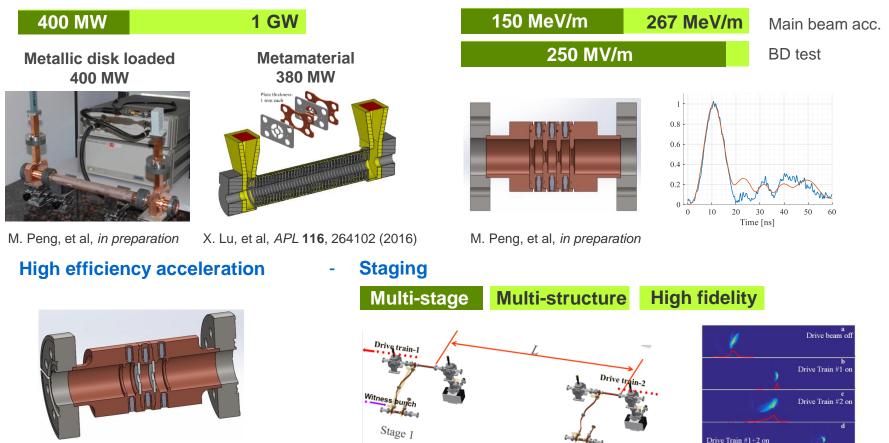
JIAHANG SHAO



Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. AF7 - SUBGROUP RF - MINIWORKSHOP ON CAVITY PERFORMANCE FRONTIER

TBA: TeV-scale linear collider (AFLC)

W. Gai, et al, JPP 78, 339-345 (2012)


Key technologies and challenges:

- High power generation and high gradient acceleration
- High efficiency acceleration
- Staging

TBA: TeV-scale linear collider (AFLC)

High power generation and high gradient acceleration

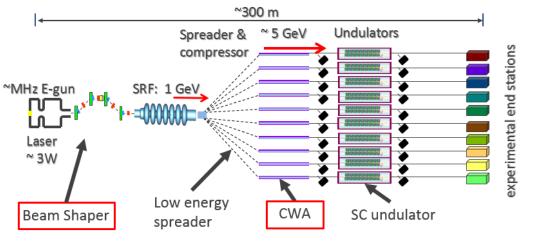
Stage 2

C. Jing, et al, NIMA 898, 72 (2018)

10

11 Beam energy [MeV]

12


Argonne

13 14

B. Freemire et al. in preparation

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by Uchicago Argonne. LLC

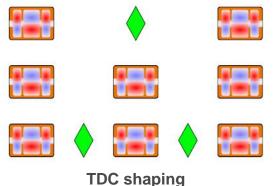
CWA: XFEL

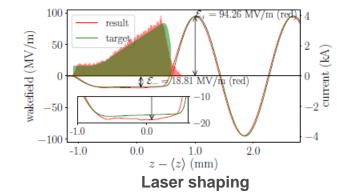
A. Zholents, et al, Proceedings of IPAC2018

Key technologies and challenges:

- High charge drive beam shaping
- High frequency corrugated waveguide structure
- Beam break-up control
- SC undulators

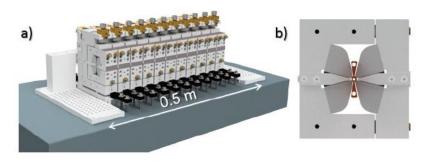
UCHICAGO ARGONNELLE US DEPARTMENT OF ENERGY Argonne National Laboratory is a US. Department of Energy laboratory managed by UChicago Argonne, LLC

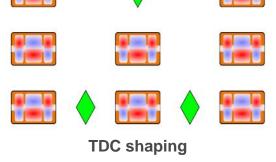



CWA: XFEL

-

-


High charge drive beam shaping

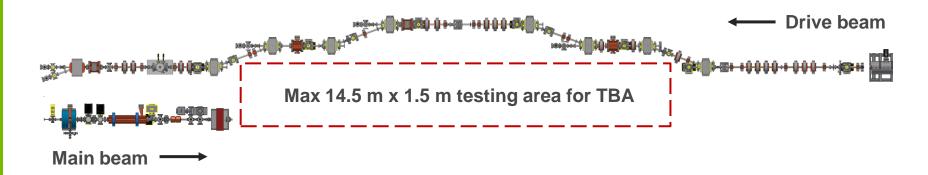


W. Tan, et al., arXiv 2101.07414 (2021)

Beam break-up control

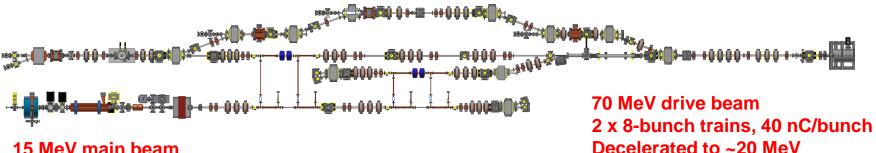
A. Zholents, et al, Proceedings of IPAC2018

G. Ha, et al, PRAB 23, 072803 (2020)


High frequency corrugated waveguide Courtesy of A. Zholents

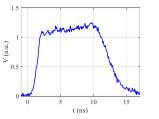
3.0 2.5 2.0 i, Magnified longitudinal profile of corrugations 1.5 :49.3 μm 1.0 <u>340.7 ± 5µm</u> 0.5 0.0 200 400 800 600 1000 f, (GHz)

ARGONNE WAKEFIELD ACCELERATOR FACILITY (AWA)

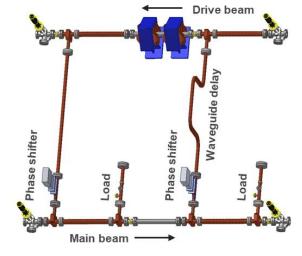

- Two independence beamlines
 70 MeV drive beam, 15 MeV main beam
- World's highest charge drive beam 100 nC single bunch, 600 nC bunch train
- Beam shaping
 World's only operating EEX/DEEX, CSR-free shaping methods in development
- Flexible beamline configuration Multiple testing zones available

PROPOSED DEMONSTRATORS (NEAR-TERM)

TBA: 500 MeV demonstrator

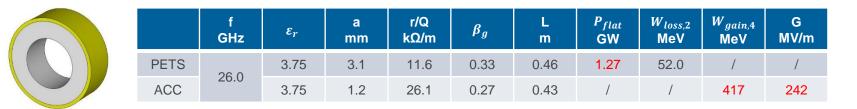

15 MeV main beam Low charge single bunch Accelerated to ~500 MeV

- Drive beam distribution



U.S. DEPARTMENT OF ENERGY U.S. Department of Energy laboratory unanaded by UChicago Argonne. LLC.

- Stage acceleration



PROPOSED DEMONSTRATORS (NEAR-TERM)

TBA: 500 MeV demonstrator

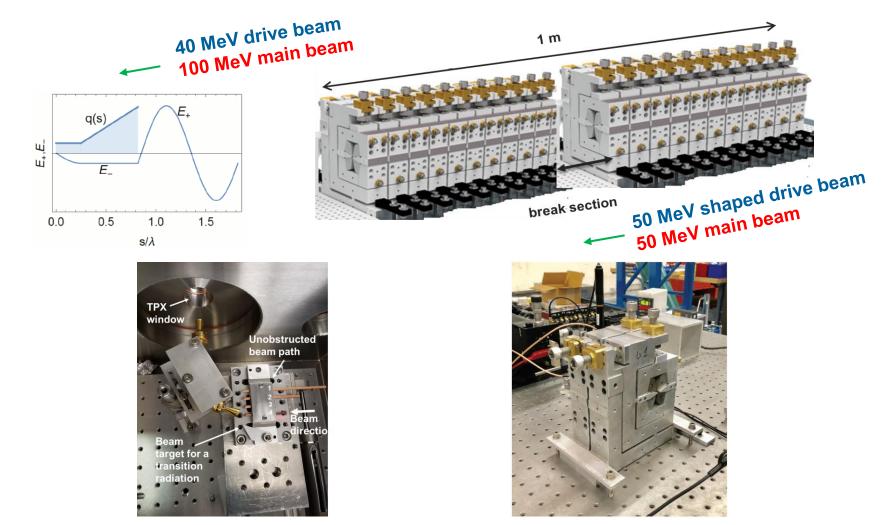
- Dielectric loaded structure

- Dielectric disk structure

	2π/3	f GHz	$\boldsymbol{\varepsilon}_r$	a mm	r/Q kΩ/m	$oldsymbol{eta}_g$	L m	P _{flat} GW	W _{loss,2} MeV	W _{gain,4} MeV	G MV/m
0	PETS	26.0	38	3.2	13.3	0.31	0.42	1.37	54.2	/	/
	ACC	26.0	9.8	1.2	28.1	0.30	0.49	/	/	502	256

- Other candidates under investigation

- 40 nC drive beam: $\varepsilon_n = 80 \ \mu m$

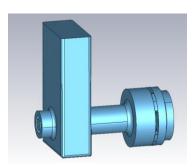

- 0.1-3 nC main beam: $\varepsilon_n = 10 \ \mu m$

PROPOSED DEMONSTRATORS (NEAR-TERM)

CWA: Energy doubler

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Courtesy of A. Zholents



PROPOSED DEMONSTRATORS (MID-TERM)

TBA

3 GeV multi-bunch demonstrator -

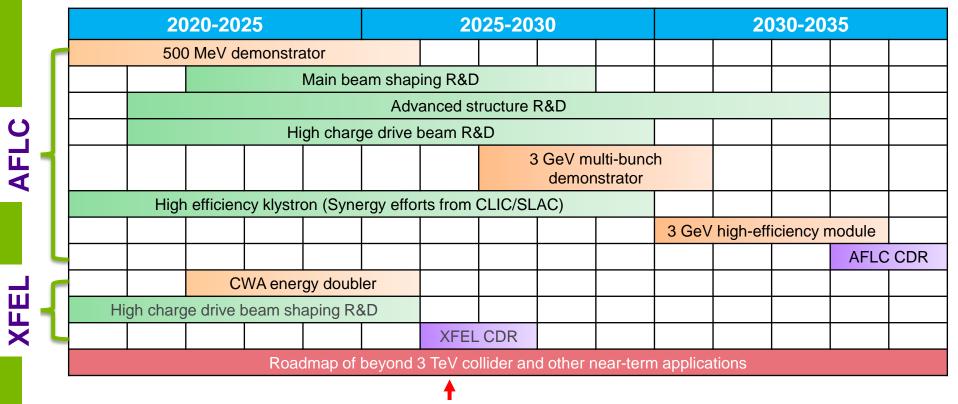
4 stages, 6 PETS/stage 24 accelerating structure 13 GHz main beam with multi-bunch train generated from X-band gun

3 GeV high-efficiency module (fully functional module for AFLC) -

Main beam shaping Beam loading compensation High efficiency klystrons

CWA

Explore CWA concepts for future TeV-scale collider



SWFA 15-YEAR ROADMAP

Integral Demonstrator

Key component

Milestone report

AWA facility upgrade

SUMMARY

- Solid progress has been made on key technologies in TBA and CWA
- Near-term demonstrators in the AWA facility are proposed to test integrated technologies for future linear collider and XFEL
- Mid-term demonstrators aim for higher-level integration towards fully functional modules in future large scale machines
- Collaboration in the SWFA community, knowledge from broader high gradient studies, support from funding agencies are critical for demonstrators realization and success

