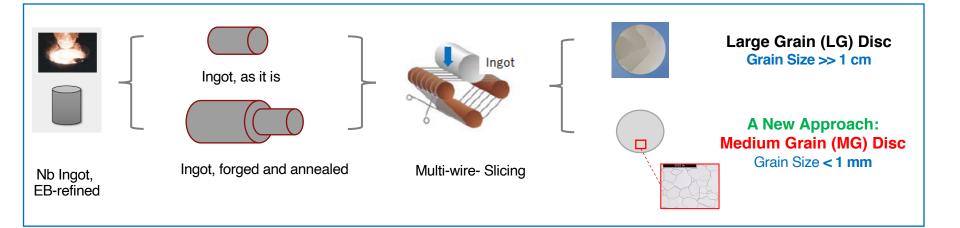
Forged Ingot Niobium Technology for Scientific Frontiers and Accelerator Applications

G. Myneni^{1,2,3}, G. Ciovati^{3,5}, P. Dhakal³, Hani E. Elsayed-Ali¹, A. Fajardo⁴, Md Obidul Islam¹, B. Khanal⁵, N. Lannoy⁴, F. Marhouser³, P. Olarey⁴, R. A. Rimmer³, T. Saeki⁶, M. Yamanaka⁶, T. Dohmae⁶, K. Umemori⁶, A. Yamamoto^{6,7}

¹Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529
 ²BSCE Systems Inc., Yorktown, VA 23693
 ³Accleratro R&D, Jefferson Lab, Newport News, VA 23606
 ⁴ATI Specialty Alloys & Components, Albany, OR 97321
 ⁵Physics, Old Dominion University, Norfolk, VA 23529
 ⁶High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan 305-0801
 ⁷European Organization for Nuclear Research (CERN), Geneva, Switzerland, CH-1211

Wednesday, February 17, 2021 Virtual SNOWMASS mini-Workshop on Cavity Performance Frontier Myneni Ganapati rao@jlab.org

Office of Science


Intro to Nb Technologies for SRF

Fine Grain (FG) Rolled Nb sheets	Medium Grain (MG) Forged Ingot Nb discs	Large Grain (LG) Ingot Nb discs
Up to fourteen manufacturing steps Labor intensive	E-beam melted ingot of larger dia. forged to required dia and then sliced	E-beam melted ingot of required dia. is sliced
Grain Size ASTM 5 ~ 50 μm	ASTM 0 – 3, < 1 mm	Large non uniform grains >1 cm
Widely used complex technology prone to contamination	New kid on the block and very clean surfaces	Proven clean surface technology
Uniform & adequate mechanical properties	Superior uniform mechanical properties	Non uniform mechanical properties
Requires stringent QA & expensive	Cost advantage	Cost advantage

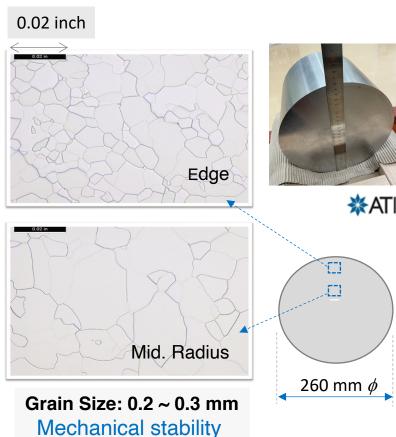
Medium Grain Nb discs sliced from Nb Forged Ingot*

• Aiming for clean, mechanically stable, and cost-effective SRF cavity production.

* The "Nb forged ingot" technology originated by **ATI** (see Appendix), and SRF (GHz) cavities planned to be fabricated and RF tested by **KEK** and **JLab**, to qualify this approach, in the collaboration of **ATI, BSCE, JLab, ODU and KEK**.

A Sample Half-cell successfully press formed, using a Disc sliced from Nb Forged Ingot in cooperation of ATI, BSCE and KEK

- A sample/trial MG disc directly sliced from Nb forged ingot preproduced by ATI
 - RRR; ~ 100,
 - Grain-size: ASTM 3.5 ~ 5.5,
 - Thickness 3.1 mm,
 - Heat-treated,
- The disc press-formed, as a practice at **KEK**, with **successfully** keeping good mechanical stability.



Courtesy: ATI

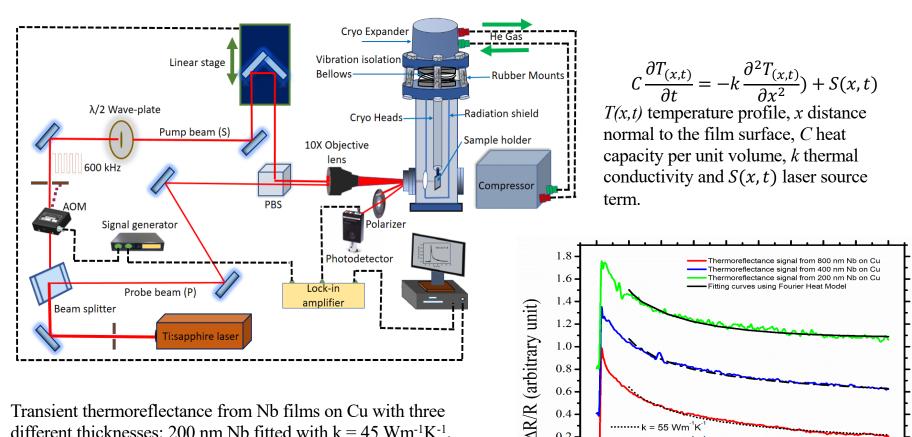
Sample Nb-RRR Forged Ingot produced by ATI for **1.3 GHz SRF cavity fabrication at KEK**

"Nb RRR" Billet,	annealed	ample location	
Parameters	Nb sheet (FG) (Spec. Eu-XFEL as Reference)	Nb forged ingot (MG) Measured	0.02 inch
RRR	R _{RT} /R _{4.2K} ≥ 300	R _{RT} /R _{TC} 450 523	Edg
Re-crystallization	100 %	100 %	0.02 m
Grain size (ASTM) Edge, Mid., Center	4 ~ 6	2,1,1.5	L RE
Grain size (mm) Edge, Mid.,Center	< 0.05	0.2, 0.25, 0.21	Mid. Radiu
Y.S0.2% (RT)	≥ 50 MPa	61 MPa	Grain Size: 0.2 ~ 0.3 m
T.S. (RT)	≥ 140 MPa	141 MPa	Mechanical stability may be expected

Forged Ingot Niobium Technology for Scientific Frontiers and Accelerator Applications

- Jefferson Lab is in the process of fabricating single C75 cavities
- NbGr1 forged ingot Nb discs are being produced by ATI for multicell C75 cavities fabrication at Jefferson Lab
- The C75 MG Nb Technology is being planned to be industrialized for a wide range of Accelerator Applications

Forged Nb Ingot JLab C75 half cells


7

Forged Ingot Niobium Technology for Scientific Frontiers and Accelerator Applications Jefferson Lab

Comparison of NbGr1 & RRR Nb

Parameters	Nb Gr1 (MG) Measured	RRR Nb (MG) Measured
RRR	~ 100	450 523
Re-crystalization	100 %	100 %
Grain size (ASTM) Edge, Mid., Center	0.5 - 5	2,1,1.5
Grain size (mm) Edge, Mid., Center	0.05 - 0.3	0.2, 0.25, 0.21
Y.S0.2% (RT)	~ 67 MPa	61 MPa
T.S. (RT)	> 147 MPa	141 MPa

Forged Ingot Niobium Technology for Scientific Frontiers and Accelerator Applications

0.4

0.2.

0.0

Transient thermoreflectance from Nb films on Cu with three different thicknesses: 200 nm Nb fitted with $k = 45 \text{ Wm}^{-1}\text{K}^{-1}$, 400 nm Nb fitted with $k = 50 \text{ Wm}^{-1}\text{K}^{-1}$ and 800 nm Nb fitted with k = 55 Wm⁻¹K⁻¹. Curves for 200 and 400 nm are shifted for clarity. All measurement at RT.

Forged Ingot Niobium Technology for Scientific Frontiers and **Accelerator Applications**

This technique will be used for measuring the Thermal diffusivity of MG Niobium

400

Time (ps)

500 600

700 800 900

= 55 Wm⁻¹K

200

100

0

= 50 Wm⁻¹K⁻¹

45 Wm⁻¹K

300

Summary

- Comparison of FG, MG and LG Nb Technologies
- MG RRR Nb Ingot is produced by ATI and shipped to KEK
- KEK will fabricate and qualify 1.3-GHz SRF cavities
- JLab plans to industrialize MG C75 technology for accelerator applications

Forged Ingot Niobium Technology for Scientific Frontiers and Accelerator Applications

Wednesday, February 17, 2021 Virtual SNOWMASS mini-Workshop on Cavity Performance Frontier Myneni Ganapati rao@jlab.org

10

Appendix: Specialty Alloys & Components: Innovator in reactive and refractory metals

ATI Specialty Alloys and Components began innovating specialty alloys more than 50 years ago and continues to lead the way with a wide range of specialty alloys in conventional product forms, as well as custom shapes and near-net shape components made possible by advanced finishing and machining operations.

Applications

- Aerospace
- Chemical Processing
- Defense
- Electronics and Catalysts
- Electrical Energy
- Jet Engine
- Maritime
- Medical
- Missile & Space
- Nuclear
- Oil & Gas
- Structural Components
- Superconductivity

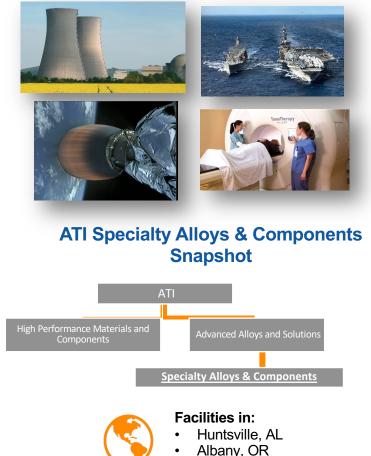
🔆 🛪

Products

- NiTi AlloysHafnium
- Niobium
- OmegaBond[®] Tubing
- Tantalum
- Titanium

Tungsten

Zirconium


Vanadium

- Tube-Reduced Extrusions (TREX)
- Laboratory
 Subassembly
 Precision machining

Finishing

 Sonic configuration machining

Capabilities

