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Introduction 

Superconducting radiofrequency (SRF) cavities are extremely efficient devices for generating large 
electromagnetic fields, which often makes them the technology of choice for transferring energy to beams 
in modern particle accelerators. Major high energy physics facilities that are based on SRF accelerators 
include LBNF/DUNE [1], LHC [2], HL-LHC [3], and EIC [x], as well as the proposed next generation 
Higgs factories ILC [4], FCC-ee [5], and CepC [6]. Normal conducting (NCRF) and SRF cavities can both 
reach accelerating gradients on the order of 10s of MV/m. The key advantage that superconducting cavities 
have is their high quality factor Q0, which gives them orders of magnitude smaller heat dissipation, allowing 
them to operate with high duty factor at high fields (e.g. constantly running vs requiring short pulses) and 
to greatly reduce the amount of overhead from RF power supplies that would be dissipated in the cavity 
walls.  

SRF cavities have been around for about 50 years [7], and all SRF accelerators in use today use 
niobium as the material in the RF surface. Niobium has been the material of choice because it has good 
superconducting properties (e.g. high critical temperature ~9.2 K), and, as an element, is easy to fabricate 
with good stoichiometric uniformity over a large ~1 m2 surface. Over years of development, new cavity 
treatments have led to continued improvement in Nb cavity performance. For example, the maximum 
accelerating gradient of Nb cavities has reached as high as ~50 MV/m [8, 9], which is very close to the 
predicted ultimate limit set by the superheating field of the superconductor [10, 11, 12].  
 While research continues on improving niobium cavity performance, research effort is also being 
dedicated in parallel to next-generation SRF cavity materials which have the potential to significantly 
outperform Nb and thus replace Nb as the prime SRF material. The current most promising and most 
advanced next-generation material is Nb3Sn [13]. We are therefore expressing here a strong 
recommendation for increasing support of Nb3Sn SRF research and technology development.  
 
Medium term motivation: High Q at high T 

Nb3Sn has a critical temperature of ~18 K, about twice that of niobium, allowing it to achieve a 
high Q0>1010 at ~2x higher operating temperatures than Nb. Changing the operating temperature from typical 
2.0 K for Nb to 4.4 K for Nb3Sn while maintaining intrinsic quality factors in the 1010  to 1011 range would 
slash energy consumption and thus cryogenic operating costs by as much as an order of magnitude, and 
would substantially decrease infrastructure costs for the cryogenic plant.  

This would be a considerable advantage for high duty factor HEP accelerators, such as FCC-ee [5]. 
For a linear collider (ILC) Higgs Factory and Top Factory upgrade, high-Q, high-temperature Nb3Sn could 
enable increasing the RF pulse length as well as the repetition rate of the pulses, thereby greatly increasing 
luminosity. For smaller applications, Nb3Sn SRF also opens up the possibility for turn-key operation with 
cryocoolers instead of complex liquid helium cryogenic plants, which is already being explored for small 
scale and industrial accelerator applications [14, 15, 16].  
 
Long term motivation: Potential for high gradient operation 

Nb3Sn also has a predicted superheating field that is twice as high as niobium [12], which could 
allow for a similar increase in the maximum accelerating field, up to 100 MV/m. This would be an enormous 



advantage for high energy linac applications such as an energy upgrade for the ILC to multi-TeV (see also 
separate LOI on ILC high-energy upgrade [17]).  
 
Additional motivation: Dark sector searches  

SRF cavities are also being explored not as a means of accelerating particles but as a means for 
detecting them in the next generation of dark sector searches [18, 19, 20]. Nb3Sn could have a distinct 
advantage for these searches due to its ability to remain superconducting in large magnetic fields, which 
would be important for example for axion haloscopes. 
 
Current landscape for Nb3Sn R&D  

In the U.S, the Department of Energy started funding Nb3Sn R&D initially at Cornell University, 
followed by programs at Jefferson Lab and Fermilab [13]. Stimulated by the Nb3Sn SRF progress at these 
laboratories with first proof-of-principle demonstrations of superior performance, worldwide interest in 
Nb3Sn SRF has greatly increased recently, and new Nb3Sn R&D efforts have started at labs and in industry, 
e.g. at CERN, IMP, ULVAC/KEK, NHMFL/Florida State University/University of Texas–Arlington, 
Peking University, STFC, ODU, and Ultramet [21-29].  

Nb3Sn cavity performance has not reached its ultimate performance potential discussed above yet, 
but it has been making substantial progress over the past years. Using as a metric the maximum accelerating 
gradient with Q0>1010 at 4.4 K, cavities have increased from ~5 MV/m in the 1990s [29] to ~13 MV/m in 
2014 [30], to ~18 MV/m in 2015 [31], to ~24 MV/m in 2020 [32]. This has come with corresponding 
improvements in understanding of the materials science and fabrication methods for the Nb3Sn coatings 
[33-40]. 
 
Recommendation for continued investment in Nb3Sn 

Superconducting RF is a key technology for future HEP accelerators. With continued investment 
into Nb3Sn SRF cavity R&D, next-generation cavities based on Nb3Sn will become a reality with 
performance specifications highly beneficial for HEP applications, enabling higher luminosity, higher 
energy, and facilitating energy sustainable science.  
 
Conclusions  
 The unique advantages of Nb3Sn cavities make them an exciting prospect for future HEP 
experiments. They already achieve high Q0 at 4.4 K at accelerating gradients that are useful for high duty 
factor applications, including first demonstrations in large, accelerator-scale structures [32, 35]. With 
continued progress, they have the potential to further reduce cryogenic losses and also to eventually 
outperform current state-of-the-art niobium in energy gain by a significant margin for high energy linear 
accelerator applications. Investigations that are already underway will reveal how useful they could be in 
dark sector searches requiring a high magnetic field. In a future Snowmass 2021 contributed paper, we will 
expand on the state-of-the-art for Nb3Sn SRF cavities, and ask the Snowmass community to strongly 
endorse continued investment into Nb3Sn SRF cavity R&D. 
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