AF7 - Subgroup RF - MiniWorkshop on Cavity Performance Frontier 16-17 February 2021

An Impartial Perspective for Superconducting Nb₃Sn coated Copper RF Cavities for Future Linear Accelerators

Emanuela Barzi, Fermilab & Ohio State University

ᅷ

- California Institute of Technology: Barry Barish
- Thomas Jefferson National Accelerator Facility: Robert A. Rimmer, Anne-Marie Valente-Feliciano
- * Massachusetts Institute of Technology: Bill Barletta
- SLAC National Accelerator Laboratory: Marc Ross, Paul B. Welander + Emilio Nanni, Sami Tantawi
- Technische Universität Darmstadt: Lambert Alff, Nail Karabas, Márton Major, Jasnamol P.
 Palakkal, Stefan Petzold, Norbert Pietralla, Nils Schäfer
- * National Institute for Materials Science, Japan: Akihiro Kikuchi
- High Energy Accelerator Research Organization (KEK), Japan: Hitoshi Hayano, Hayato Ito,
 Eiji Kako, Kensei Umemori, Akira Yamamoto + Hideaki Monjushiro
- + Tohoku University, Japan: Shigeru Kashiwagi, Fuminori Honda
- + Los Alamos National Laboratory: Evgenya Simakov

ᅷ

Outline

- * Motivation
- Short overview of Nb_3Sn coating methods applicable to Cu or Bronze
- ***** Conclusion

*

Motivation

- Make the case that more funding should be invested in the U.S. and elsewhere on Cu or Bronze based cavities coated with Nb₃Sn. Producing Nb₃Sn on inexpensive and thermally efficient metals such as Cu or bronze exploits the full potential of this advanced superconductor.
- The maximum accelerating gradient expected for Nb cavities is ~50 MV/m. With a theoretical H_{sh} of 0.42 T (Dynamic superheating field 40% larger. i.e. 0.59 T), as compared to 0.25 T (0.35 T) for Nb, Cu cavities with a thin layer of Nb₃Sn coated onto their inner surface should produce accelerating gradients larger than 100 MV/m.
- With a higher T_{co} of up to 18 K vs. 9.2 K for Nb, SRF Nb cavities coated with Nb₃Sn also produce very high quality factors Q₀, and the cavities operate at 4.5 K. This would decrease capital and operation costs for the cryogenic plant.
- With Nb as one of the main cost driver of SRFs, a devoted global effort in developing Cu cavities lined with Nb₃Sn would make the ILC, or an electronpositron Higgs factory with c.m. energy of 250 GeV, more affordable and more likely to be built.
- A successful technology would readily apply to other HEP accelerators, such as a Muon Collider, and to accelerators for Nuclear Physics, for Spallation Sources and would expand the market for much more economical Light Sources / FELs.

Formation Temperature has to be accessible for Cu

Magnetron Sputtering

- 1. Can be performed either sequentially to form a multi-layer structure of Nb and Sn followed by post-reaction;
- 2. From a single stoichiometric target [CERN].
- 3. In a co-sputtering mode from two targets [Technische Universität Darmstadt]. Using two separate targets in a co-sputtering setup allows tuning the kinetic energies of both elements independently.

This process leads to the superconducting phase formation at much lower substrate temperatures as compared to thermal diffusion conditions. For instance, at Darmstadt direct Nb₃Sn deposition was achieved on Cu by magnetron cosputtering at 435°C. E. Barzi (FNAL & OSU), AF7 Sub

Four sets of 5 x 5 mm^2 test coupons were fabricated and evaluated:

- Two sets were on sapphire substrates.
- Two sets were on Nb substrates.
- One sample on Nb substrate was annealed at 700 C and demonstrated superconducting transition at 14 K.
- The measurements of stoichiometry demonstrated composition of approximately 80 at% of Nb and 20 at% of Sn. We are working to improve stoichiometry.

Sputtering ion source

Full size 1.3 GHz SRF cavity

LDRD by Evgenya Simakov

Electro-Chemical Deposition –FNAL within US/ Japan HEP Collaboration

[1] "Synthesis of Superconducting Nb₃Sn Coatings on Nb Substrates", E. Barzi, M. Bestetti, F. Reginato, D. Turrioni and S. Franz, Supercond. Sci. Technol. 29 015009.

Electro-Chemical Deposition

E. Barzi (FNAL & OSU), AF7 Subgroup RF – February 17, 2021

Electro-Chemical Deposition – KEK Results

Aqua regia (HCl: HNO3=3: 1) treatment for 30 minutes removed external bronzelayer.E. Barzi (FNAL & OSU), AF7 Subgroup RF – February 17, 2021

Electro-Chemical Deposition – NEXT STEPS

Electrolytic solution

HOW TO USE THE METHOD ON CU

* Sputter Nb on Cu cavity

* Proceed with the electro-chemical recipe to layer Cu, Sn and Cu r Cathode (-) Anode (+)

TO INCREASE ACCELERATING GRADIENT

Based on the properties of Nb_3Sn (quenching field, residual resistance, etc.) optimization codes can be run to get the best possible shape based on the desired goals of max gradient and minimum cooling power for a given beam parameters (Sami Tantawi et al.)

Thick Nb₃Sn Layers via Bronze Route

REPRODUCE PRODUCTION MODEL OF Nb₃Sn WIRES:

- Billet assembly
- Hot extrusion
- Cold-Die Drawing
- Intermediate annealing
- Heat treatment in inert atmosphere

HOT PRESSING + COLD FLAT ROLLING

Akihiro Kikuchi, NIMS

Thick Nb₃Sn Layers via Bronze Route

HOT FLAT ROLLING + COLD FLAT ROLLING

Nb/Bronze/OFC Clad Tube

Hydro-Forming for Cavity

https://indico.classe.cornell.edu/event/1806/timetable/#20201112.detailed

Acknowledgments

* Funding: Work is funded by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy and supported by the U.S. Magnet Development Program (US-MDP).