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Background

Superconducting RF Technology has been the building block for many high-energy physics accelerators, essentially based on
bulk niobium (Nb). Over the past decades, the RF performance of bulk Nb cavities has continuously improved with material
and surface developments (nitrogen surface doping, infusion...).

Latest advances to extract the maximum
performance from established bulk Nb technology

Long-term solutions for superconducting radio-frequency (SRF) surfaces Doping/Infusion, new shape designs, large grain
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Next Generation Nb/Cu SRF Cavities Based on Advanced Coating Technology for CW Accelerators

Nb/Cu Technology proof of principle with LEP2, LHC, ALPI machines

Great potential for cost savings and operational advantages for machines operating at lower frequency and
relatively modest gradients

high current storage ring colliders : FCC, EIC and CEPC

O Increased temperature stability due to Cu substrate higher thermal conductivity

e O Operation at 4.5 K, generating capital and operational cost savings

= O Material cost saving, particularly for low frequency structures
go . O Easily machinable and castable structures
ol lt“h Perspectives for significant cryomodule simplification.
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Explore alternative materials with higher critical temperature and critical fields

Alternate Materials and Advanced Structures for Higher Gradients and High Q
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Compact SRF Accelerators for Societal Applications

The emergence of reliable, energy efficient high Q systems, based on
highly performing film-based SRF cavities along with transformative . ..
development with cryocoolers would impact societal applications for environmental applications
ranging from medicine to industry.

Compact cavity cooled by cryocoolers

Cost effective compact superconducting accelerators will reduce the
footprint and capital investment of

% Medical machines - cancer therapy, medical radioisotope production
“* environmental remediation

%+ accelerator-driven systems (ADS) -nuclear waste transmutation,power

Ciovati, G., et al. “Design of a low-cost, compact SRF accelerator
for flue gas and wastewater treatment.” (2017).

generation Ciovati, Gianluigi, et al. "Multi-metallic conduction cooled
. L.: ; ; ) superconducting radio-frequency cavity with high thermal
“ high-intensity proton accelerators for homeland security (nuclear stability. " Superconductor Science and Technology 33.7 (2020):

weapons detection). 07LTO1.

Stilin, Neil et al. “Stable CW Operation of Nb;Sn SRF

M OSt Critical area Of development Cavity at 10 MV/m using Conduction Cooling.” arXiv:
2002.11755: Accelerator Physics (2020).
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Advances in Thin Film Nb on Cu Technology
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Full control over final SRF performance
with strict process protocols

Further tailoring opportunities:
N doping on films
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Advances in Thin Film Nb on Cu Technology
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Developments across shapes & frequencies
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Nb,Sn Development

Material studies to understand the fundamental
growth mechanism linking with RF performance

Cormell Sample
— JLab Sample

Grain-boundary diffusion primarily controls thin-film growth. Patchy regions lack
grain boundaries resulting in RF-affecting thin regions.

Multi-cell cavity coating for accelerator application
Despite early cavities suffered non-uniformity,
enhanced substrate quality and continuously
updated coating process resulted in notable
imprO\;ement.
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Modification of coating process based on learnings from correlated material and RF

Jeffégon Lab studies of Nb;Sn samples resulted in the removal of recurrent Q-slopes.

Multi-metallic conduction cooled Nb3Sn-coated cavity
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Materials such as Nb;Sn offer order
of magnitude improvements in
operating efficiency, and a
theoretical pathway to 100 MV/m
gradient.

Recent R&D efforts have
demonstrated that the persistent Q-
slope and gradient limitation
observed in the past are not
fundamental but process induced
and therefore amenable to
improvement.

Alternative deposition approaches
such as sputtering, energetic
condensation and atomic layer
deposition (ALD) should be fully
explored for enhanced properties
and conformality.

Early results with sequential and
stoichiometric deposition both on
Nb and on Cu are promising and
could prove to push the Nb;Sn
technology further.
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Alternative Materials to Nb & Multilayered Structures

1 Develop alternative materials such as NbTiN,
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Alternative Materials to Nb & Multilayered Structures

L The combination of such materials with adequate dielectric material in multi-layered structures have been
conceived as a performance enhancer for bulk Nb and Nb/Cu film cavities. Theoretical models predict that
appropriately fabricated nanometric superconductor-insulator-superconductor (SIS) multilayer films can delay
vortex penetration in Nb surfaces allowing them to sustain higher surface fields than any pure material.
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Path Forward

Already well-established and fruitful international R&D collaborations
JLab, SLAC, ODU, CORNELL, FNAL, FSU, W&M, ANL, Temple U. ...
&
CEA Saclay, CERN, DESY, HZB, INFN-LNL, KEK, STFC, TRIUMF and other institutions

should be fully supported and expanded in the following areas of R&D:

s & 4 2 0 2 4 &8 &
VVVVV

itlal

ol % » Theoretical and material studies to gain in-depth understanding of the fundamental limitations of
o — thin film superconductors under radio-frequency fields

» Advanced coating technology for Nb/Cu and alternative materials, Nb,Sn, V,Si, NbTiN ...

O Energetic condensation (electron cyclotron resonance (ECR), HiPIMS, kick positive pulse...)

O Atomic Layer Deposition (ALD)

O Hybrid deposition techniques

- ;{‘ ' / » Cavity deposition techniques for development of superconductor-insulator-superconductor (SIS)
' :Jl?s __ra . Fa; nanometric layers to further enhance the performance of bulk Nb and Nb/Cu
- N ‘L _ t = » Improved cavity fabrication & preparation techniques

0 electroforming, spinning, hydroforming, electro-hydro forming, 3D additive manufacturing

0 environmentally friendly electropolishing, diamond cutting, nano-polishing, plasma etching ...)
\ > Cryomodule design optimization

‘ Bellows » Improvement of accelerator ancillaries with advanced deposition techniques

A\ \ O HiPIMS Cu coated bellows, power couplers...

Next-Generation SRF Thin Film Technologies Jefﬁegon Lab



What do we need?

Synergies between R&D programs, institutions along aligned path

Multiple RF test platforms (QPR, ...) for fundamental, detailed

materials study
--Doping, Nb;Sn, peak fields, multi-layers, other A15, MgB,...

Expanded distribution of funding (GARD...) for National Labs & Universities
@

Continued investments are needed in R&D, production and test facilities.
gese [ abor

Existing facility upgrade

New facilities

Fostering industrial partners in US

Next-Generation SRF Thin Film Technologies Jefﬁegon Lab



Summary

o SRF thin film technology based on advanced coating techniques offers many
opportunities to fully engineer SRF surfaces :

» Deliberate creation of the most favorable interface or functional interlayer
» Tailoring of the most favorable film(s) structure

» Properties enhancement with doping/infusion

» Control over the final SRF surface with dry oxidation or cap layer protection.

o Bulk-like performance Nb films, alternative material films and SIS multilayer structures
open the possibility of major system simplifications and enhanced performance.

0 Such developments would be transformative not only for future high energy physics
machines but will also bring forth the opportunity to upgrade existing machines to higher
performance in achievable energies and cryogenic & power consumption, within the
same footprint.

0 Active community in the US and Internationally

Next-Generation SRF Thin Film Technologies Jefferson Lab



Summary

Virtual International Workshop on Nb35n SRF Science, Technology, and Applications
(Nb3SnSRF'20)
10- 13 Nov 2020

https://indico.classe.cornell.edu/event/1806/

9t International Workshop on "Thin films applied to Superconducting RF: Pushing the limits of
RF Superconductivity"
VIRTUAL EDITION
March 15-18, 2021

https://indico.jlab.org/e/TFSRF2021
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