SBNfit FC Update

Maya Wospakrik, Tom Peterka, David Lenz, Sven Leyffer, Holger Schulz

SBN Program

- detectors located in the Fermilab Booster Neutrino Beamline with main goal to search for short baseline anomaly:
 - ICARUS
 - MicroBooNE
 - SBND
- Each detector shares the same neutrinos source and same detector material/technology-> measurement is highly correlated -> reduce systematics

Extra Neutrinos

Minimal extension to the Three-Neutrino Paradigm is if there is an additional sterile neutrino.

This is referred to as the **3+1 paradigm** and currently what the current project is benchmarking against.

Oscillation probability via this mixing:

$$P_{\alpha\beta} = 4|U_{\alpha4}|^2|U_{\beta4}|^2\sin^2\left(1.27\frac{\Delta m_{41}^2 L}{E}\right)$$

$$P_{lpha
ightarrow eta} = \sin(2 heta)^2 \sin\left(rac{\Delta m^2 L}{4E}
ight)^2$$

 Δm^2 : frequency of oscillation $\sin^2(2\theta)$: amplitude of oscillation

Only depends on 2 parameters!

More Neutrinos?

We will have to expand the U matrix seen previously to account these additional sterile neutrinos (3+x).

Oscillation probability via this mixing will need to be expanded as well:

$$P_{\alpha\beta} = 4|U_{\alpha4}|^2|U_{\beta4}|^2\sin^2\left(1.27\frac{\Delta m_{41}^2 L}{E}\right)$$

depends on more parameters!

3N+2: 7 parameters 3N+3: 12 parameters

Motivates improvement to the grid-based scanning method

Objective: Provide FC correction to the Sensitivity Curves

This is the (3+1) paradigm:

$$P_{lpha
ightarrow eta} = \sin(2 heta)^2 \sin\left(rac{\Delta m^2 L}{4E}
ight)^2$$

 Δm^2 : frequency of oscillation $\sin^2(2\theta)$: amplitude of oscillation

Only depends on 2 parameters!

FC curves from this study will be added into this plot to increase the precision of the fits

χ^2 Calculation for v Oscillation Sensitivity

- Benchmarking:
 - SBNfit framework: one of the fitting framework used by SBN collaboration (Physics Group at Nevis Lab at Columbia University)
- The core of this procedure is to calculate a χ^2 surface in the $(\Delta m_{41}^2, \sin^2(2\theta))$ oscillation parameter plane:

$$\chi^{2}(\Delta m_{41}^{2}, \sin^{2} 2\theta) = \sum_{i,j} \left[N_{i}^{null} - N_{i}^{osc}(\Delta m_{41}^{2}, \sin^{2} 2\theta) \right] (E_{ij})^{-1} \left[N_{j}^{null} - N_{j}^{osc}(\Delta m_{41}^{2}, \sin^{2} 2\theta) \right]$$

Covariance Matrix

Sensitivity is calculated by computing a χ^2 surface in the $(\Delta m_{41}^2, \sin^2(2\theta))$ oscillation parameter plane:

$$\chi^{2}(\Delta m_{41}^{2}, \sin^{2} 2\theta) = \sum_{i,j} \left[N_{i}^{null} - N_{i}^{osc}(\Delta m_{41}^{2}, \sin^{2} 2\theta) \right] (E_{ij})^{-1} \left[N_{j}^{null} - N_{j}^{osc}(\Delta m_{41}^{2}, \sin^{2} 2\theta) \right]$$

Systematics uncertainties are computed in form of combined covariance matrix of the 3 detectors (56x56 matrix):

SBND, MicroBooNE, ICARUS

[arXiv:1503.01520v1]

Spectrum/Input Data

Sensitivity is calculated by computing a χ^2 surface in the $(\Delta m_{41}^2, \sin^2(2\theta))$ oscillation parameter plane:

$$\chi^2(\Delta m_{41}^2,\sin^2 2\theta) = \sum_{i,j} \left[N_i^{null} - N_i^{osc} (\Delta m_{41}^2,\sin^2 2\theta) \right] (E_{ij})^{-1} \left[N_j^{null} - N_j^{osc} (\Delta m_{41}^2,\sin^2 2\theta) \right]$$

$$P_{\alpha \to \beta}^* = \sin(2\theta)^2 \sin\left(\frac{\Delta m^2 L}{4E}\right)^2$$

 Δm^2 : frequency of oscillation $\sin^2(2\theta)$: amplitude of oscillation

*Oscillation spectrum at Best Fit Point

[arXiv:1503.01520v1]

Bringing in MFA Model (Tom, David)

We calculate the oscillated spectrum (*) at each grid point that depends on the frequency (mass) and the amplitude (angle)

Bin contents of these oscillated spectrum at each grid point are concatenated into a 56 length size vector

Create MFA model which field-geometry dimension depends on the grid size (Ngridpoints). Bin content represents the science variable -> 56 science variables.

Still ongoing: validating the model. Accuracy of the MFA model not as good as previous implementation

χ^2 Calculation for v Oscillation Sensitivity

FC Procedure Pseudo Code (old implementation)

Given number of universes $N_{\text{univ}} > 0$, discretized grid $\mathcal{G} = \{\mathbf{p}_k : k = 1, \dots, N_{\text{gridpoints}}\}$, and given fixed covariance \mathbf{M} .

for $\mathbf{p}_k \in \mathcal{G}$ do

for
$$i = 1, \ldots, N_{univ}$$
 do

Fluctuate: $\mathbf{d}_i \leftarrow \mathcal{P}(\mathbf{c}_k)$ psweudo-experiment sample of central data $\mathbf{c}_k := \overrightarrow{\mathcal{S}}(\mathbf{p}_k)$

Initialize: $\chi^2_{\min} \leftarrow \infty$, and $\mathbf{q}_{\min} \leftarrow \mathbf{p}_k$

for $\mathbf{q}_l \in \mathcal{G}$ do

Evaluate:
$$\chi^2(\mathbf{q}_l) := \chi^2(\mathbf{d}_i, \overrightarrow{\mathcal{S}}(\mathbf{q}_l), \mathbf{M})$$

if
$$\chi^2(\mathbf{q}_l) < \chi^2_{\min}$$
 then

Update:
$$\chi^2_{\min} \leftarrow \chi^2(\mathbf{q}_l)$$
 and $\mathbf{q}_{\min} \leftarrow \mathbf{q}_l$

end

end

Record:
$$\Delta \chi^2(\mathbf{p}_k) \leftarrow \chi^2(\mathbf{d}_i, \mathbf{c}_k, \mathbf{M}) - \chi^2(\mathbf{d}_i, \overrightarrow{\mathcal{S}}(\mathbf{q}_{\min}), \mathbf{M})$$
 distance to mean.

end

end

Algorithm 1: Classical Feldman-Cousins Algorithm.

From: Sven's overleaf document https://www.overleaf.com/project/5f7205 a341ace1000189420d

- calculate the chi2 at each grid point for Nuniv
- find which grid point will give the minimum chi2 and assign that grid point as the best fit point.
- This best fit grid point and the chi2 minimum will then be used to build the sensitivity curves

BF point is limited to the input grid point

FC Procedure Pseudo Code (new implementation)

Given number of universes $N_{\text{univ}} > 0$, discretized grid $\mathcal{G} = \{\mathbf{p}_k : k = 1, \dots, N_{\text{gridpoints}}\}$, and given fixed covariance \mathbf{M} .

for $\mathbf{p}_k \in \mathcal{G}$ do

for
$$i = 1, \ldots, N_{univ}$$
 do

Fluctuate: $\mathbf{d}_i \leftarrow \mathcal{P}(\mathbf{c}_k)$ sample of central data $\mathbf{c}_k := \overrightarrow{\mathcal{S}}(\mathbf{p}_k)$

Optimize: Find the (global) minimizer over $\mathbf{q} \in \mathbb{R}^D$ of:

$$\mathbf{q}_{\min} \leftarrow \min_{\mathbf{q}} F(\mathbf{q}) \equiv \chi^{2}(\mathbf{d}_{i}, \overrightarrow{\mathcal{M}}(\mathbf{q}), \mathbf{M}) = \left(\mathbf{d}_{i} - \overrightarrow{\mathcal{M}}(\mathbf{q})\right)^{T} \mathbf{M} \left(\mathbf{d}_{i} - \overrightarrow{\mathcal{M}}(\mathbf{q})\right)$$

Record: $\Delta \chi^2(\mathbf{p}_k) \leftarrow \chi^2(\mathbf{d}_i, \mathbf{c}_k, \mathbf{M}) - \chi^2(\mathbf{d}_i, \overrightarrow{\mathcal{M}}(\mathbf{q}_{\min}), \mathbf{M})$ distance to mean.

end

end

Algorithm 2: Optimization-Based Feldman-Cousins Algorithm.

BF point is not limited to the input grid point!

From: Sven's overleaf document https://www.overleaf.com/project/5f7205 a341ace1000189420d

- In new procedure, use optimization to find the chi2 minimum and BF point
- The data is now encoded as MFA model
- Currently using cppoptlib libraries for the optimizer
- Exploring the
 LBfgsbSolver to set the constraint for the minimization point

Complete Workflow

HPC tools: MPI to distribute the work load to all ranks through memory

*MPI: Message Passing

Fermilab

Interface

Rank 0				
Rank 1				
Rank n				
DIY Application				

Machine	Cori phase 1 (Haswell)	Cori phase 2 (KNL)	
CPU	Intel Xeon E5-2698 v3	Intel Xeon Phi 7250	
Clockspeed	2.3 GHz	1.4 GHz	
Cores per node	32	68	

HPC tools: MPI to merge Output Convert to HDF5 n-dimensional contour plot

Adding the FC curves to the Sensitivity Plot

Phys. Rev . D 96, 055001 (2017)

FC calculation

Summary

- A lot of progress made since last All Hands Meeeting.
- In the process of implementing alternate approach to the grid scanning for higher dimensionality (7 parameters for $3N+2 \rightarrow 3.2$ mil grid points!).
 - Implementation of MFA model
 - Replacing grid scanning method with optimization using libraries from cppoptlib
 - Validation work for the MFA modeling and minimization are ongoing

