

Observables to include in the likelihood

Jennet Dickinson Snowmass pMSSM scan meeting January 27, 2021

Recap: plan for grand scan

- Perform a grand scan that populates all regions of parameter space relevant for Snowmass studies
- The scan will need to cover a very large region of parameter space
 - For 100 TeV pp collider, expect sensitivity up to ~20 TeV masses. Assume 50 TeV is sufficient for decoupling
 - Use log stepping to retain high granularity at low masses
- Today: what observables to include in the likelihood

Recap: plan for grand scan

 For 100 TeV pp collider, expect sensitivity up to ~20 TeV masses. Assume 50 TeV is sufficient for decoupling

Parameter	Minimum	Maximum	Stepping
tan β	1	60	Log
M _A	100 GeV	25 TeV	Log
ΙμΙ	80 GeV	25 TeV	Log
IM ₁ I	1 GeV	25 TeV	Log
IM_2I	70 GeV	25 TeV	Log
M_3	200 GeV	50 TeV	Log
m _L 123~, m _e 123~	90 GeV	25 TeV	Log
m _Q 12~, m _u 12~, m _d 12~	200 GeV	50 TeV	Log
$m_Q 3 \sim$, $m_u 3 \sim$, $m_d 3 \sim$	100 GeV	50 TeV	Log
$ A_b $, $ A_{\tau} $	1 GeV	7 TeV	Log
$ A_t $	1 GeV	$3\sqrt{(m_Q 3 \sim m_u 3 \sim)}$	Log

Observables in the likelihood

- CMS McMC scan: (from Malte)
 - Include some parameters in likelihood as Gaussian centered on measured value:

$\Delta_0 (B \rightarrow K \gamma)$	BR(B0→K* ⁰ γ)
BR(b →s γ)	BR(B⁺→τ v)
$BR(B_s \rightarrow \mu \mu)$	$BR(D_s \rightarrow \tau v)$
$BR(B_d \rightarrow \mu \mu)$	BR(D _s →μ v)
BR(b→ s μ μ)	$\Delta(ho)$
BR(b→s e e)	Higgs mass

- Over-sample (ie. simulate more model points for higher statistics) in interesting regions
 - Near interesting values of a_μ
 - Near the Planck measurement of DM relic density
 - For ΔEW < 100

1/27/21

Observables in the likelihood

ATLAS Run 1:

- Randomly sample flat probability distribution, then apply cuts:

Parameter	Minimum value	Maximum value
Δho	-0.0005	0.0017
$\Delta(g-2)_{\mu}$	-17.7×10^{-10}	43.8×10^{-10}
$BR(b \to s\gamma)$	2.69×10^{-4}	3.87×10^{-4}
$\mathrm{BR}(B_s \to \mu^+ \mu^-)$	1.6×10^{-9}	4.2×10^{-9}
${\rm BR}(B^+\to\tau^+\nu_\tau)$	66×10^{-6}	161×10^{-6}
$\Omega_{{ ilde \chi}_1^0} h^2$		0.1208
$\Gamma_{\text{invisible}(\text{SUSY})}(Z)$	 -	2 MeV
Masses of charged sparticles	100 GeV	
$m(\tilde{\chi}_1^{\pm})$	103 GeV	
$m(\tilde{u}_{1,2},\tilde{d}_{1,2},\tilde{c}_{1,2},\tilde{s}_{1,2})$	200 GeV	
m(h)	124 GeV	128 GeV

Proposal

- Include B-physics measurements and Higgs mass in the McMC likelihood
- For all other observables, use oversampling when necessary
 - $-a_{\mu}$
 - DM relic abundance
 - ΔEW
 - Please share your additional suggestions!

Backup

Log stepping, fixed width gaussian

Log stepping

- This will efficiently populate parameter space
- Requires a nonzero lower bound on each parameter
- Need to tune:
 - Width of the gaussian
 - Base of the logarithm
- Cannot cross zero: a scan with initial point > 0 will only explore the parameter space > 0
 - For those parameters that can have negative values, rely on the distribution of initial points to populate ± space
- Requires us to abandon the fully Bayesian interpretation (á la CMS Run 1)

