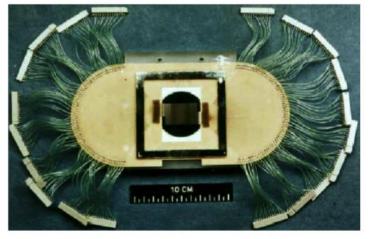


ASIC Design and Development

Paul Rubinov 2021 All Engineers Retreat 24 Feb

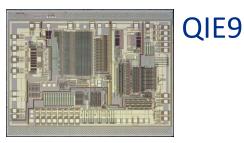


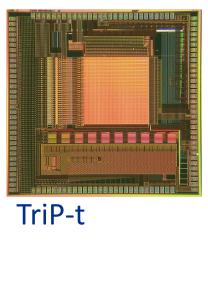
The Fermilab ASIC Group

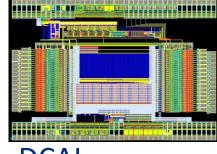
Application Specific Integrated Circuits

The history of ASIC design for HEP is tied to the development of Si strip detectors. The first Fermilab ASIC : QPA02 (Quad Preamp), bipolar, semi-custom

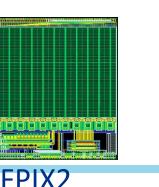
First Si strip detector at CERN NA11 (1981) 60um readout pitch, 400 chan Readout > 1 sq meter

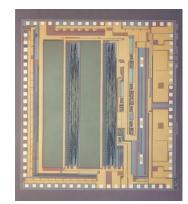


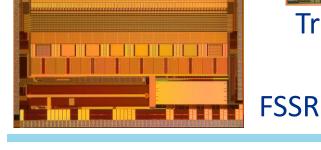

R. Yarema, "ASIC Design at Fermilab", FERMILAB-Conf-91/170



Need for collider detectors drives full custom design in CMOS


- By 2005, Fermilab ASIC group is BUSY
 - 5 (!) ASIC engineers + Analog and Digital + Test engineers
 - Many projects, most in TSMC 0.25um (250nm)




DCAL

RMCC

+SVX4 +MASDA(X) +APD RO (NOvA) Going to 130nm **CFermilab**

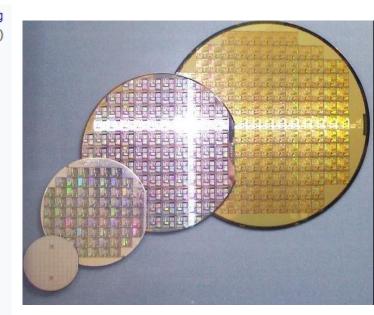
Today

J. Hoff	S. Li
C. Gingu	-
A. Shenai	I
C. Syal	
R. Wickwire	
(M. Hammer)	

i T. England H. Sun X. Wang

G. Drake D. Braga Q. Sun T. Zimmerman **F. Fahim** Deputy Head Quantum Science Program, FQI

• + Test engineers, IT support, firmware support etc.

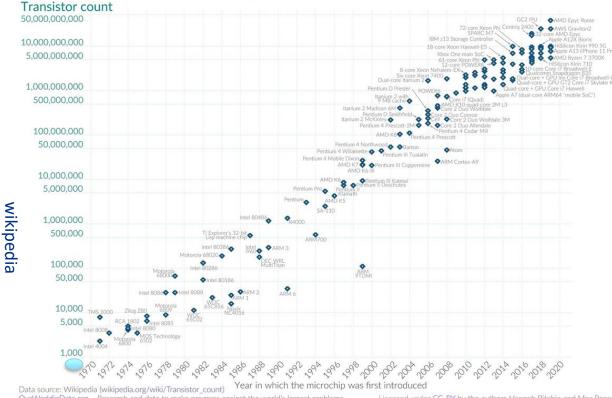


The power of Integrated Circuits

• Moore and friends – digital scaling

Scaled Parameters	Constant field Scaling
t_{ox}, L, W, X_j, W_d	1/κ
N_a, N_d (ions/cm ³)	к
Power supply: (V_{dd})	1/~
Electric field in device: (E)	1
Capacitance: (C)	1/~
Inversion charge density (Q)	1
Circuit delay time: $T CV_I$	1/~
Power dissipation: (P)	1/
Power density $(\sim P_A)$	1
Circuit density	ĸ ²
Chip Area (A)	1/

MOSFET scaling
(process nodes
10 µm – 1971
6 µm – 1974
3 µm – 1977
1.5 µm – 1981
1 µm – 1984
800 nm – 1987
600 nm – 1990
350 nm – 1993
250 nm – 1996
180 nm – 1999
130 nm – 2001
90 nm – 2003
65 nm – 2005
45 nm – 2007
32 nm – 2009
22 nm – 2012
14 nm – 2014
10 nm – 2016
7 nm - 2018
5 nm - 2020
Future
3 nm ~ 2022
2 nm ~ 2024


4in wafer \rightarrow 300mm wafer

Moore's law cont.

Moore's Law: The number of transistors on microchips doubles every two years Our World in Data

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

1990: \$25K for prototype run

2020: \$40K for 55nm GF for 9mm² (50 chips)

OurWorldinData.org - Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

Analog scaling

P. O'Connor and G. De Geronimo Prospects for charge sensitive amplifiers in scaled CMOS NIM A 480 (2002) 713-725 Written exactly 20 yrs ago

System	ystem C_{det} t_s P I_{leak} Detector				
System	C_{det}	¹ S	1	Ileak	Detector
а	30	75	10	0.001	Wire chamber
b	15	25	0.2	10	Si Strip
с	0.3	25	0.02	1	Si Pixel
d	3	2500–500 ^a	10	0.01	Semiconductor
UNITS	pF	ns	mW	nA	

Table 2

System parameters for ENC scaling simulation

^a For this system, the shaping time was varied at each L_g to optimize the overall noise (i.e., to make the white series noise and parallel noise equal).

Typical application

Tracking, imaging

Tracking Tracking Spectroscopy

Analog scaling cont.

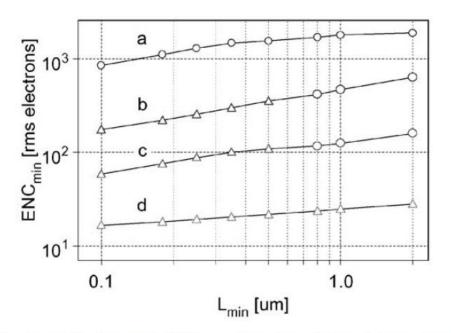
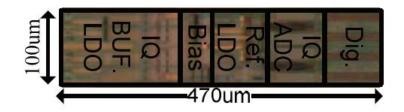
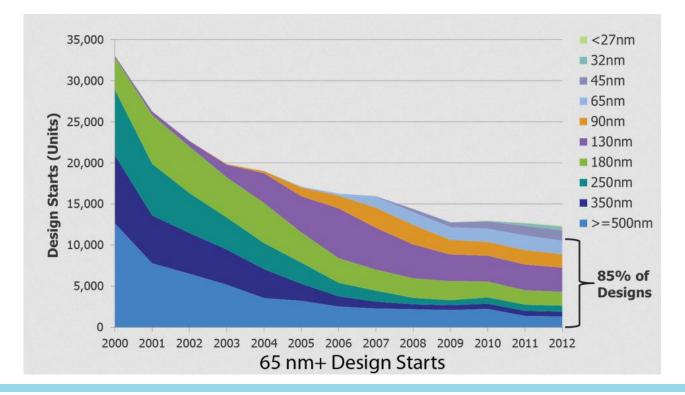
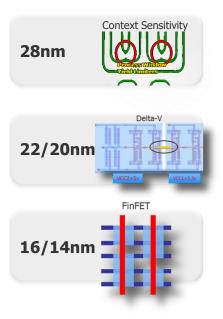



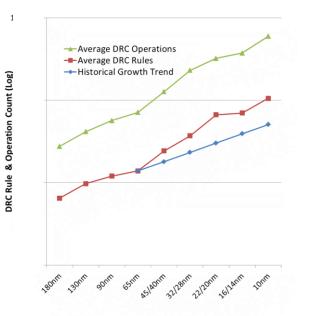
Fig. 6. Optimum total ENC as a function of the minimum gate length. Curves (a-d) refer to the system parameters given in Table 2. Circles = NMOS, triangles = PMOS.

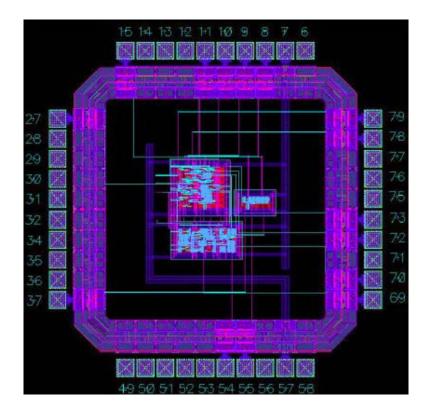
ADC scaling

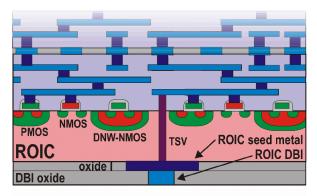

	0 to 14 bit, 0MSPS	FOM [:] *freq	= Power/(2^ENOB)
Technology	Year	Area (sq mm)	FOM (fJ/step)
250nm	2010	4.5	344
180nm	2012	0.5	89
130nm	2012	0.24	31
65nm	2012	0.19	46
28nm	2015	0.047	13

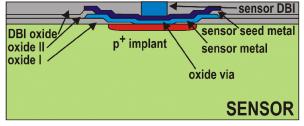
The power of Application Specific

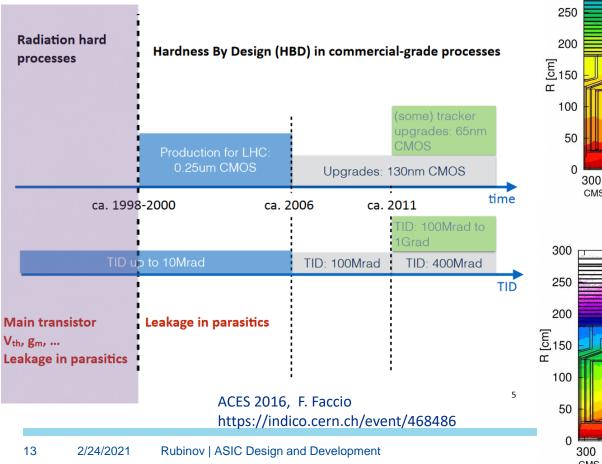

Moore's law does not drive design decisions

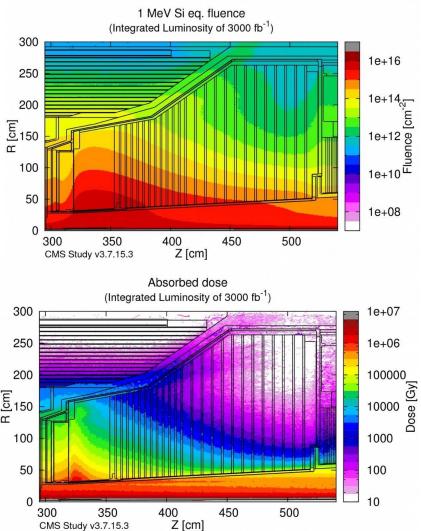


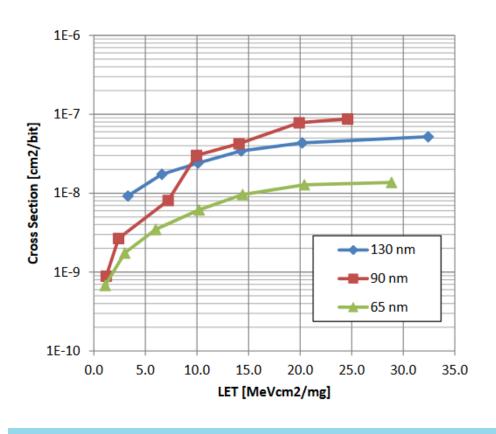

Functionality

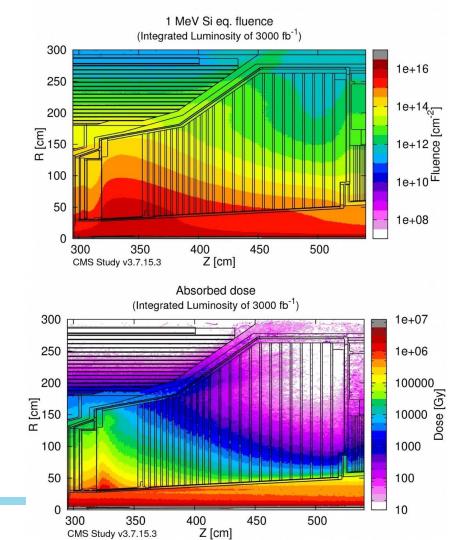



Complexity








Need for Extreme Environments

Need for Extreme Environments

Need for Extreme Environments

E TRANSACTIONS ON ELECTRON DEVICES, VOL. 67, NO. 11, NOVEMBER 2020

Performance and Low-Frequency Noise of 22-nm FDSOI Down to 4.2 K for Cryogenic Applications

Bruna Cardoso Paz[©], Mikaël Cassé[©], *Member, IEEE*, Christoforos Theodorou, Gérard Ghibaudo[©], *Fellow, IEEE*, Thorsten Kammler, Luca Pirro, Maud Vinet, *Senior Member, IEEE*, Silvano de Franceschi, Tristan Meunier, and Fred Gaillard

(Invited Paper)

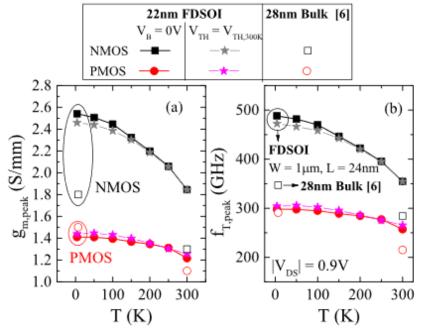


Fig. 5. (a) $g_{m,peak}$ versus *T* and (b) $f_{T,peak}$ versus *T* for nMOS and pMOS, at $V_B = 0$ V and at V_B needed to keep V_{TH} constant = $V_{TH,300K}$. $|V_{DS}| = 0.9$ V.

🛟 Fermilab

Projects within the ASIC group (current, recent and near future)

CMS Upgrades ECON-T and ECON-D: data concentrators for trigger and DAQ paths of HGCAL ETROC: precision timing for MIPs in the forward region using LGADs

DUNE Cold electronics **COLDADC**: (with LBNL and BNL) 16ch, 12 bit, 2 MSPS ADC **COLDATA**: "Digital-on-Top" leveraging FNAL cold models. <1E-15 BER @25m and1.28gbps

Projects within the ASIC group (current, recent and near future)

Quantum projects MIDNA: readout of Skipper CCDs to allow large number of channels SNSPD: readout of Superconducting Nanowire Single Photon Detector (part of QuantISED) ACC1: Atomic Clock Control – shrinking Atomic Clocks to be chip sized (part of QuantISED) CITC1: Cryo-electronics Ion Trap control for Qubits and other quantum applications CryoADC: Collaboration with Microsoft, component for quantum computing Skipper in CMOS (R&D) : extending Skipper technology to CMOS sensors SiSeRO (R&D) : Joint development with MIT LL to extend Skipper technology to MIT-LL process

Other:

FALCON: High speed Xray camera for APS upgrade at ANL

VIPRAM (130nm): 3D CAM (Vertically Integrated Pattern Recognition Associative Memory)

Take Home Message

One Size does NOT fit all.

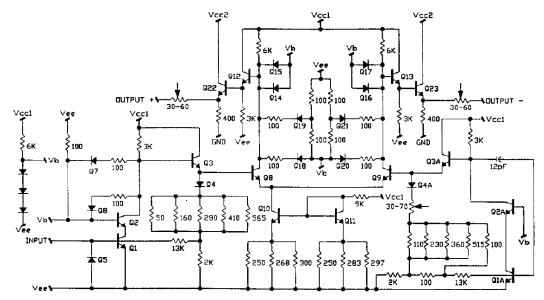
Fermilab ASIC group is here to do apply expertise in

Integrated Circuits to our Specific Applications

🗱 Fermilab

BACKUP

19 2/24/2021 Rubinov | ASIC Design and Development


Backup: MPW prices from Europractice

GLOBALFOUNDRIES

Technology	Standard EUR / mm ²	Discounted EUR / mm ²
GLOBALFOUNDRIES SIGE 8HP	3,800	3,600
GLOBALFOUNDRIES 130 nm BCDlite	1,500 ²	1,400 ²
GLOBALFOUNDRIES 130 nm LP	1,500 ²	1,400 ²
GLOBALFOUNDRIES 90WG Silicon Photonics	5,250	5,000
GLOBALFOUNDRIES 55 nm LPx-NVM/LPx-RF	4,000 ²	3,800 ²
GLOBALFOUNDRIES 55 nm LPe	4,000 ²	3,800 ²
GLOBALFOUNDRIES 45RFSOI	7,350 ²	7,000 ²
GLOBALFOUNDRIES 40 nm LP/LP-RF/RF-mmWave	5,000 ²	4,700 ²
GLOBALFOUNDRIES 28 nm SLP/SLP-RF	10,200 2	9,700 ²
GLOBALFOUNDRIES 22 nm FDSOI	14,000 ²	13,200 ²

BACKUP: QPA02

4 chan Gain = 17mv/fC ENC = 1600e @ 20pF Rise = 6 ns Falltime = 12ns Power = 42 mw/channel

QPA02 Schematic Diagram

R. Yarema, "ASIC Design at Fermilab", FERMILAB-Conf-91/170

🛟 Fermilab

