

Microelectronics for next generation of HEP instrumentation

Farah Fahim Engineering retreat 24 Feb 2021

Microelectronics Growth

Traditionally based on Moore's law

Technology scales 2× every 18 months – sustained by transistor scaling

More than Moore?

- World is inherently analog (mandates an analog interface)
- System requires various functions (beyond just digital)
- Multi technology platforms

Why do we need more than Moore

Source: CEA- LETI

Microelectronics enabling next generation HEP instrumentation

- Novel devices
 - Skipper CCD-in-CMOS
- Deep Cryogenic electronics
 - Quantum Communication & Computing
- Hybrid integration
 - Electronic Photonic Integration
 - 3D integration
- Hardware Software codesign to enable edge compute
 - On-chip machine learning

Novel Devices

Farah Fahim | Microelectronics for next generation HEP instrumentation

Future CCD technologies

- Fermilab has been pioneering Skipper CCD technologies Averaging multiple samples for ultra-low noise performance (~ 1000 averages for << 1e- noise) – Juan Estrada
- 1st Step Enable parallel readout with low-cost multiple channels. Translate PCB design to Readout Integrated Circuit (ROIC) with lower noise performance (1/3rd CCD noise) and ~8mW power per channel.
- 4" \times 4" board to \sim 4 \times 4 mm²

T. England, F. Alcalde Bessia, H. Sun, L. Stefana (SCD)

- Midna ASIC

 VREF

 VREF

 VREF

 VREF

 VREF
- Cost reduction of 100 ×

Future CCD technologies

- 2nd Method Increase readout speed without increasing noise. SiSeRO approach (Collaboration with MIT Lincoln Lab)
- 10 × speed improvement
- Additional advantages readout is DC coupled at low operating voltages (removes AC coupling capacitors and further increases system integration and reduces footprint)

M. SofoHaro, A. Birman (TJ)

5≥ Fermilad

Future CCD technologies

- Ultimate approach skipper-in-CMOS
- Utilize a commercial CMOS Image Sensor process for lower noise performance (Collaboration with SLAC and Tower Semiconductor)
- Noise of a pinned photodiode (0.7e-)
- With 10 averages we hope to achieve ~0.2e- noise
- Allows hybrid pixel sensor with fullyparallel (per pixel) readout achieving the ultimate goal of 1kfps readout over large areas (6 cm²) ~ 2.5 Mpixels per chip

Deep Cryoelectronics for Quantum Computing

Farah Fahim | Microelectronics for next generation HEP instrumentation

Quantum communication: Superconducting Nanowire SinglePhoton detectorsParameterGoal by 2025SOA 201

SNSPD best performance – (operating at 1 - 4K) Time-correlated single photon counting from the deep UV to the mid-infrared Extremely low dark counts and very high precision QUANTUM INTERNET - High bandwidth communication

$1^{st}\,Step-Low$ Noise amplification in collaboration with Georgia Tech and JPL

Parameter	Goal by 2025	SOA 2019	
Efficiency	>80% @ 10 µm	98% @ 1550 nm	9
Dark Counts	< 1e-6 cps / mm ²	< 1e-4 cps / mm ²	<
Energy Threshold	12.5 meV (100 µm)	0.125 eV (10 µm)	0
Timing Jitter	< 1 ps	2.7 ps	1
Active Area	100 cm ²	0.92 mm ²	0
Max Count Rate	100 Gcps	1.2 Gcps	0
Pixel Count	1.6e7 (4096x4096)	1024 (32x32)	6

11 2/24/21 Farah Fahim I Microelectronics for next generation HEP instrumentation

Beyond NISC era QC utilizing cryo-electronics

- Collaboration with industry (Microsoft – High speed ADC)
- Achieving high-speed and high-resolution are often conflicting goals
- Key transistor behavior such as low noise performance improves at cryogenic temperature
- Why National Lab? [Cryogenic electronics for DUNE – full cycle from modelling to testing; very similar approach for radiation environment]
- Modelling is key (Collaboration with EPFL/ TUDELFT)

Architecture Suitable for 72 Qubit Computer

Scale by Integrating Control Electronics

Benefits of Cryogenics for Trapped-Ion QIP

J.Chiaverini, MIT LL

- Greatly reduced electric-field noise
 - This noise is a limiting factor in error in trappedion 2QGs in small traps
 - Measured to be much larger than JN ("anomalous")
 - Source unknown
 - Empirically, 2 orders of magnitude lower at ~5K when compared to room temp.
 - This is true when technical noise is under control

MIT-LL measurements

Presentation Name - 13 Author Initials MM/DD/YY

J.Chiaverini, MIT LL

Pino et al., arXiv:2003.01293 (2020) [HQS]

JC et al., Quant Inf. Comp. 5, 419 (2005) [NIST]

- Controlled ion motion through variation of electrode potentials
 - Each electrode segment requires a dedicated voltage for ion array control
 - For large arrays, electrical interconnects will become a limit
- Multiplexing can reduce wiring overhead, but at a cost of speed
- On chip analog voltage production can directly address this issue
 - Further level of on-chip control: microprocessor to implement timedependent voltage updates
 - Standard motion subroutines, calibration, etc.

Cryo-electronics control for Ion-Traps (QSC - ORNL)

Design challenges:

- Low output noise: < 100nV/sqrt(Hz) around a wide frequency range (0.5 - 5 MHz) and at low frequency.
- Low power: < 5 mW/DAC (limited by the cooling power of the cryostat) while driving a wide rage of load capacitance (70 1800 pF) of +/- 10 V full scale at 10 MHz waveform updating rate.
- High resolution: 14-16 bit for precise control and not disturbing RF electrodes.
- Memory: 100 electrodes * 14 bit * 5000 points ~ 2.5 MB

Hybrid Integration

Farah Fahim | Microelectronics for next generation HEP instrumentation

Atomic Clock: Joint DOD – DOE project

Electrode

Layer

Portable optical atomic clock with frequency instability of 10⁻¹⁶ over 10,000 sec

DOD – Atomic Photonic Integration E – Electronic Photonic Integration

Create a determined loop compact system

H. Sun, S. Li

Hardware-Software codesign: Al

Farah Fahim | Microelectronics for next generation HEP instrumentation

Why do we need data processing on the edge

POWER: CV²f x (data volume) problem

- Total power consumption to move data from pixel to periphery: 1 pJ/bit (~ 5mm distance)
- Total power consumption to move data off-chip: > 0.1 nJ/bit

Minimize C,V

- 3D Integration (high density, low capacitance interconnect)
- Low voltage signaling

Reduce data

 Typically just zero-suppression for on-detector sparce data

HL LHC:

Higher granularity, higher occupancy, higher precision

=> needs NEW APPROACH

			-				_				
Operation:	Energy (pJ)	Relativ	e Ene	rgy C	ost	Area (µm²)	R	elativ	e Are	a Cost	
8b Add	0.03	1				36	1				
16b Add	0.05					67					
32b Add	0.1					137					
16b FP Add	0.4					1360					
32b FP Add	0.9					4184					
8b Mult	0.2					282					
32b Mult	3.1					3495					
16b FP Mult	1.1					1640					
32b FP Mult	3.7					7700					
32b SRAM Read (8KB)	5					N/A	1				
32b DRAM Read	640					N/A	1				
		1 10	10 ²	10 ³	104		1	10	10 ²	10 ³	
Memory access is orders of magnitude higher energy than compute											
Viviance Sze (w@eems_mit) [Horowitz, ISSCC 2014]									1917		

Power Dominated by Data Movement

Deep Neural Network: Autoencoder for data-compression

- Enable edge compute : Data compression for efficient usage of power and bandwidth
- Programmable and Reconfigurable: ability to reprogram weights to adjust for detector conditions and eventually lead to self-learning intelligent detectors
- Hardware Software codesign : Algorithm driven architectural approach
- Optimized : Low power and Low latency
- Operating in extreme radiation environment: 200 M rad
- Autoencoder for data compression is the first use case towards a DNN based on-chip learning and inference¹

Tool-kit development and Operation in rad-hard environment

- Integration of HLS generated and expert RTL
- Design code agnostic approach for implementation of various triplication methods

HL LHC High Granularity Calorimeter*: Data flow

CNN: Encodes information by correlating spatial features

- **conv2D layer** extract spatially corelated geometric features
- U. Columbia: G. Di Guglielmo **Flatten layer** – Vectorizes the 2D image from the conv2D layer [8 x 4 x 4 = 128 x 1] NU: M.B. Valentin, S. Memik
- **Dense layer** aggregates the various features to provide higher order information ٠
- **ReLU** an activation function which introduces non-linearity by applying thresholds (part of both the ٠ conv2D and dense layers)

J. Hirschauer

SCD: N. Tran, C. Herwig,

Towards heterogenous system on-chip DOMAIN SPECIFIC COMPILER Resource Tuning

OPTIMIZATION REQUIREMENTS

- Analog Mixed-Signal Kernels
- Neuromorphic computing (event driven)

OPTO-ELECTRONIC COMPUTE

- In-memory compute (**non-Von Neumann approaches**) new materials
- Electronic-Photonic conversion
- Hybrid integration

Vector Matrix Multiplication for Neural Networks

Vector-by-Matrix Multiplication ...

UC Santa Barbara's Metal-Oxide Memristors

64 × 64 passive crossbar circuit

H. Kim et al. arXiv 2019

Background work: M. Prezioso et al., Nature 521, 61 2015, M. Prezioso et al. IEDM'15 p. 17.4.1, 2015, F. Merrikh Bayat et al. Nature Comm., 2018

Typical I-V characteristics

Details:

- Al₂O₃/TiO_{2-x} active bilayer by reactive sputtering
- CMOS-compatible CMP/dry etching process and TiN/Al electrodes for higher conductance
- ~250 nm wide lines
- The largest functional analog-grade passive memristor crossbar circuit supported by proper statistics

D. Strukov, UCSB

2/24/21 $U_{r} \neq 0$ rah Fahim Microelectronics for next generation HEP instrumentation

In-Pixel Al

Analog – Mixed Signal implementation using floating gates or memristive cross-bar arrays

Thankyou

Farah Fahim | Microelectronics for next generation HEP instrumentation