ND Installation sequence

Fabrice Matichard
Near Site Integration Workshop
16 March 2021

Goals for this talk:

- Updated installation sequence
- Including input from consortia
- Timeline and parallel activities
- Resources and conflicts

Conventional Facility beneficial occupancy - 2026

Install Sequence Q2-Q3 2026

Location	Equipment	I&I Support	Consortia	Others
External	M-Crane	Crane Operator (1) Rigging Crew (2)	Engineer(1) Technician (1)	Rigging Contractor
Shaft	Mast Climber	-	-	Welding crew (2)
Surface	S-Crane	-	-	-

External Cryogenics Shaft Cryogenics

Helium Room

Surface Crane – 180 US TON

Mast Climber

Mast Climber for installation of cryogenic pipes and shared data cables

External Cryogenics

NON-CRITICAL PATH

- Delivery and rigging of vessels for both LAr and LHe systems
- Block road access for 2 weeks
- Piping activities

Install Sequence – Q4 2026

External Cryo.

Shaft Cryogenics

Helium Room

SAND Surface

SAND Shaft & Cavern

LBNF/DUNE

SAND OVERHEAD CRYO PIPING

GENERAL CRITICAL PATH

Duration: 6 weeks with two-person crew

- TMS footprint blocked with access
 scaffold
- Helium Multi TL mass is 600kg with 11m spool

He Multi channel TL (I&I or TMS?)

Uses scaffold by I&I to install SAND detector cable trays and TMS energy chain

Helium Room, LHe and Lar Piping

NON-CRITICAL PATH

 Install He recycle compressor + ORS + GMP + Ghe purity detector + He Purifier

Surface work area

- Spools for Helium Room
- Spools for External Cryo
- Spools for Shaft Cryo

surface building

Shaft Cryogenics

CRITICAL PATH - SHAFT BLOCKED BY CRYO

Piping jobs with mast climber duration

- Helium BOE 6 weeks two-person crew, 1-shift*
- LAr BOE 10 weeks two-person crew, 2-shifts
- I&I pull cables in the shaft unknown duration

Shaft Piping (I&I)

- Mast climber provided by I&I
- Overhang access to install piping in the cavern/shaft interface

Shaft piping Spools

Mezzanine Vessels

NON-CRITICAL PATH

- Work based on shaft mezzanine.
- Scaffold on South-East cavern side to install transfer lines interfacing with energy chain.

Install vessels in the mezzanine without crane access. Mass up to 4

Tons.

Scaffold will be placed above lift door See A14354 and A14356

Interconnect to S1/S2 interface

PRISM Scaffold (I&I or PRISM?)

Scaffold to install prism, piping and cabling in south wall

PRISM

Power Distribution

Installation of power distribution

MAGNET ECAL barrel ECAL endcap INNER TRACKER

ECAL

Pb - scintillating fiber sampling calorimeter:: 1 mm diameter sci.-fi. grooved lead foils from molding .5 mm plates

Calorimeter thickness = 23 cm Total scintillator thickness ~ 10 cm

24 barrel modules, 4.3 m total length (4 tons each) 2x32 endcaps modules

Coil parameters

Layers	2
Turns/layer	368
Ampere-turns	2.14 MA-T
Operating current	2902 A
Stored energy	14.3 MJ
Inductance at full field	3.4 H
Discharge voltage	250 V
Peak quench temperature	80 K

Inner Tracker

Decision in progress

Guaranteed heat loads

Source	Heat load
Current leads	0.6 g/s
4 K Radiation and conduction	55 W
70 K Radiation and conduction	530 W

SAND

Yoke

- Total quantity of 62 parts (including small parts) **delivered to storage area** and then lowered in the cavern, as needed, during the assembly
 - Maximum size: L 3590 mm W 5185 mm H 1200 mm Maximum Weight: 30900 kg

Magnet, including cryostat

- 1 piece: Ø 5760 mm L 4386 mm Weight: 45000 kg
- Delivered with a supporting cradle to the Test area and then to the External Assembly Building

ECAL

- Total quantity of 24 barrel modules delivered to a storage area and then to the External Assembly Building
 - Size: L 4300 mm W 590 mm H 230 mm Weight: 4000 kg
- Total quantity of 68 end-cap modules delivered to a storage area and then to the cavern
 - Nominal size ~ 1m x 5m x 0,1m, estimated mass = 200kg per unit

LAr target.

16

- Cryostat with pre-assembled internal detector delivered to the External Assembly Building.
- Purification systems installed in the Alcove.
- **Inner tracker** decision making in progress. Components delivered to a storage area and then to the External Assembly Building.

SAND Cryostat

SAND assembly in Surface Building

Install Sequence – Q1 2027

SAND move to Alcove **Helium Room**

PRISM

LAr - Surface

Alcove Craane

SAND Alignment

SAND Assembly

SAND initial end plate assembly

SAND moved in front of alcove: continue with calorimeter and TPC installation (incl. local tooling)

Cryostat

typical size comparison (ProtoDUNE)

SAND moved to final alcove location

Install Sequence – Q2 2027

24

LAr - Surface

Cryostat

Helium Room

SAND in Alcove

Cryostat in Assembly Location

Warm Structure Assembly (April – July 2027)

Install Sequence – Q3 2027

27

Energization

Energy Chains

Cold Membrane (July-Oct 2027)

Checkout (Oct-Nov 2027)
Mezzanine (Oct 2027)
Top Flange (Dec 2027)

Install Sequence – Q4 2027

Shaft Cryogenics

Helium Room SAND in Alcove PRISM LAr - Shaft Cryostat

Module Row Integration Fixture in Surface Building

ND-LAr TPC module integration to cryostat lid sections in Near Site Surface Building

Module Row down Cavern Shaft

Module Row on Cavern Floor → **Ready to Install to Cryostat**

Install Row 1 (April 2028) Install Row 2 (May2028)

Install Row 7 (July 2028)

33

SAND Proximity Cryogenics

SAND PRXOMITY CRYOGENICS

- Underground work area
- Spools for SAND

- Assembly & Installation of SAND
- Connect MCTL to SAND

	#	Description	Reasoning	Preceding Activity				
	CAVERN							
1		Install the SAND MCTL He transfer line,	Once TMS is in					
	4	cold box and valve box before SAND	place there is no	13142.A1624				
	L	detector is assembled and installed, and	clean footprint for a	Finish-to-Start				
	TMS is installed.	scaffold.						
2		Connect SAND MCTL to magnet only	Can't connect	12142 41650				
	after SAND and SAND valve box are in	without an interface	13142.A1650 Finish-to-Start					
	place	point.						

TMS

Install Steel Structure (Early 2028)

Installation

- First we build the supports (6-8 weeks)
- Then we build up the layers, back (west) to front
 - Three steel sheets + four panels per day
 - Run cosmic rays overnight before doing the next layer
- Then 4 weeks to install the six magnet coils

The schedule assumes there is no crane or shaft contention. This is likely not the case. This will move the need-by date and thus the go/no-go decision date earlier. Installation meetings have started to work this through.

36

LAr Proximity Cryogenics

CAVERN: LAr moving platform

CRITICAL PATH

Dependencies

- FS precedence to 13142-A1528 Install Mezzanine and Stair end date on 12/27/2027
- FS precedence to 13142.A1588 Detector Row 7 Cabling end date on 08/29/2028

Unconstrained duration: 20 weeks **Duration with dependencies:** 41 weeks

- Position valve boxes with overhang lifting device. 4 tons
- Cryo installs scaffold around platform that provides stair access and overhang weld position access.
- Interface with energy chain not in general critical path.

LAr proximity cryogenics (CRYO)

Scaffold around moving LAr platform

37

Transition to Commissioning

I&I Wrap-up, Cleanup

Transition to operation

