Fermilab **ENERGY** Office of Science

Thought of creating Target Incident Data by Simulation

Katsuya Yonehara Al Data monitoring 1/28/2021

Challenge to create sample data in simulation

- Systematic study of integrated signal and individual signal
- Statistics
 - How many POT?

Systematic study: Integrated vs Individual (I)

• Accuracy of integrated signal can be 2 % (or maybe 1 %)

ACNET Index															
	MUON MONITOR "Acnet Index" (seen from beams eye view)														
Tube #, Column			1	2	3	4	5	6	7	8	9				
Row															
1		upper left		152	161	170	179	188	197	110	119	128		upper right	t
2				153	162	171	180	189	198	111	120	129			
3				154	163	172	181	190	199	112	121	130			
4				155	164	173	182	191	104	113	122	131			
5				156	165	174	183	192	105	114	123	132			
6				157	166	175	184	193	106	115	124	133			
7				158	167	176	185	194	107	116	125	134			
8				159	168	177	186	195	108	117	126	135			
9		ower left		160	169	178	187	196	109	118	127	136		lower right	
				hv feed throughs are here											

In acnet code speak:

3

- E:HADCOR = { SUM(i= 104, 152-199) [(E:HADMDS[i] E:HADMPD[i])*hadcal[i]] } * [1.0 - 0.00105*(E:HMGPR - 700.0)].
- E:MM#PRC = { SUM(i= 104, 152-199) [(E:MMA#DS[i] E:MMA#PD[i])*mm#cal[i]] } * [1.0 - 0.00105*(E:MM#GPR - 800.0)].

Layout of MM pixel

Integrated signal

- MMA#DS is a signal when the beam is turned on
- MMA#PD is a pedestal when the beam is turned off
- Gas pressure is calibrated
- mm#cal is a individual signal calibration

🌫 Fermilab

Systematic study: Integrated vs Individual (II)

What pions (phase space) does individual pixel observe??

Different spectra for different pixels

MM1

Y. Yu

— X2

— хз

— X4 — X5

— X6 — X7

____ X8

— X9

total momentum at MM1(GeV/c

10 15 20 25 30

total momentum at MM1(GeV/c)

The peaks of the spectra move to low momentum from center to edge of MM1.

9 4/21/20 Yiding Yu I APS Virtual April Meeting

Systematic study: Integrated vs Individual (III)

- Proton beam position is offset by -0.05 mm in y direction
- Plots on right-hand-side show the deviation from the reference signal

Other primary parameters to affect on the mm signal gain

Horn current

5

Statistics in simulation

- Need know POT vs accuracy
 - This value tells us the required simulation time to create one event
 - This is also needed to propose the run time to High Power Computing facility (like NERSC)
- Example
 - Create sample data for missing target fin
 - Al needs 1,000 samples for training
 - Target has 48 fins
 - Total sample events 48,000
 - If the required run time to create one event is 1-hour (I guess this value is very optimistic even we use HPC), we need 48,000 hours of running simulation
 - Combine other conditions (e.g. two missing fins, etc), number of conditions become infinite

Possible alternate ways

- May pre-weighted a neural network from physics point view
 - Find a correlation among individual pixel with a specific physics condition, like horn current dependence or beam position dependence
- Develop different AI algorithm
 - So far, I have no clue on this idea...

