Department of Physics University of Cincinnati

ND Searches for anomalous $u_{ au}$ appearance (Updates)

Miriama Rajaoalisoa ajaoama@mail.uc.edu

February 04, 2021

Objectives

Main objective : study of eventual tau neutrinos that we may have in the DUNE Near detector coming from short baseline oscillations in a sterile neutrino scheme.

Evaluate the ν_{τ} appearance sensitivity of DUNE ND in both leptonic and hadronic tau decay channels.

- Event classification : signal and background separation based on kinematic differences. (Kinematic variables similar to those used in NOMAD)
- Simulation : Events were simulated using GENIE and propagated through the Near Detector using EDEP-SIM.
- Beam used : Optimized beam for ν_{τ} appearance in the DUNE FD.

Electron channel

$\tau \rightarrow e^-$ channel

TMVA Classification based on TRUE GENIE kinematic variables

BDTG response (Trained on a flat energy flux)

C

Electron channel

$\tau \rightarrow e^-$ channel

Sensitivity : based on event counting. All events were normalized such that they would correspond to 1.1e21 P.O.T. and 67t fiducial mass.

 $FOM = \frac{signal}{\sqrt{signal + background}}$ (statistics only)

► $FOM = \frac{s}{\sqrt{(s+b) + (\mathbf{0}.\mathbf{1}^*(s+b))^2}}$ (with 10% systematics and select those with FOM ≥ 1.7).

Event selection : select events with ν_{τ} BDTG score > 0.995 (region with almost no background for a background sample of 4.5 million events).

Figure : (For reference) Comparison of exclusion limits from various experiments - DUNE TDR, BSM Chapter

ወ

Electron channel Sensitivity

$\tau \rightarrow e^-$ channel

Sensitivity : based on event counting. All events were normalized such that they would correspond to 1.1e21 P.O.T. and 67t fiducial mass.

Sensitivity (1.1e+21 POT and 67t Fiducial mass)

lð

$\begin{array}{l} \textbf{Muon channel} \\ \nu_{\tau} \text{ CC } (\tau^{-} \rightarrow \mu^{-}) \text{ and } \nu_{\mu} \text{ CC separation} \end{array}$

$\tau \rightarrow \mu^-$ channel

TMVA Classification based on TRUE GENIE kinematic variables

BDTG response (Trained on a flat energy flux)

U

Muon channel Sensitivity

$\tau \rightarrow \mu^-$ channel

C

$\tau \rightarrow \rho^-$ channel

- Steps : develop a ρ selector then develop a classifier that separates NC events from $\nu_{\tau}(\tau \rightarrow \rho^{-})$.
- p classification : TMVA Classification based on kinematic infomations.
 - Signal (true ρ) : from ν_{τ} CC events : $\tau \rightarrow \rho^{-} + \nu_{\tau}$; $\rho^{-} \rightarrow \pi^{-} + \pi^{0}$; $\pi^{0} \rightarrow 2\gamma$ - from NC events : $\rho^{-} \rightarrow \pi^{-} + \pi^{0}$ (the ρ is recorded)
 - Background (false ρ) : any $\pi^{\pm} + \pi^{0}$ couple that doesn't come from a true ρ^{-} from the hadronic system or τ decay.

Hadronic channel

 ρ selector

$\tau \rightarrow \rho^-$ channel

Kinematic variables including :

$$d = \sqrt{(M_{\pi^0}^{(inv)} - m_{\pi^0})^2 + (M_{\rho}^{(inv)} - m_{\rho})^2}$$

Ø 8

$$r_{\pi}^{K} = \frac{E_{\pi}^{K}}{E_{\pi}^{K} + E_{\pi^{0}}^{K}}$$

2 2.5 3 3.5 4

0.6

Pion energy sharing

1.5

0

Inspired by Thomas Kosc's work on ν_{T} analysis in the DUNE FD.

0.5

Hadronic channel

 ρ selector

ρ candidate selector

BDTG response

C

Hadronic channel ν_{τ} CC ($\tau^- \rightarrow \rho^-$) and NC separation

ν_{τ} CC vs NC

TMVA Classification based on TRUE GENIE kinematic variables

你

Hadronic channel Sensitivity

Sensitivity

Step 1 : get all the events with potential ρ candidates for $\nu_{\tau}CC$ events and NC events. (Anything that has $\pi^{\pm} + \pi^0$ or $\pi^{\pm} + 2\gamma$). Look at all possible ho system combination.

```
1^{st} cut : select those with
\rho BDTG score > 0.99
```

Step 2 : pass through the ν_{τ} CC vs NC selector to get a ν_{τ} BDTG score.

 2^{nd} cut : select those with ν_{τ} BDTG score > 0.99

l(J

Combined sensitivity

Combined sensitivity

Ū

Sensitivities : based on the true GENIE information studies, DUNE ND's sensitivity to eventual tau neutrino appearance from sterile oscillation is competitive compared to other experiments.

Next steps :

- · Develop an electron/gamma shower classifier
- Current study is using just the single bin FOM with event counting. Eventually do a proper multi-bin shape analysis
- Integrate analysis with CAFAna framework being developed by M. Wallbank and evaluate the sensitivities with more realistic systematics

Thank you very much!

Miriama Rajaoalisoa | ND Searches for anomalous $u_{ au}$ appearance

Backup ν_{τ} CC vs ν_{e} or ν_{μ} CC separation kinematic variables

 Classification based on kinematic variables gives a reasonable output for tau leptonic and hadronic decay channels.

 Sensitivities : based on the true GENIE information studies, DUNE ND's sensitivity to eventual tau neutrino appearance from sterile oscillation is competitive compared to other experiments.

Next steps :

- · Develop an electron/gamma shower classifier
- Current study is using just the single bin FOM with event counting. Eventually do a
 proper multi-bin shape analysis
- Integrate analysis with CAFAna framework being developed by M. Wallbank and evaluate the sensitivities with more realistic systematics

Backup ν_{τ} CC vs ν_{e} or ν_{μ} CC separation kinematic variables

Ø

- Larger missing transverse momentum P_T for ν_{τ} CC.
- Can be applied to other τ decay channels.
- Separation : used ROOT TMVA in which a total of 9 kinematic variables were used (full list in backup slides).

Backup Muon vs pion separation variables

Figure : TMVA Input - CC kinematic variables from events with flat energy distribution (using GENIE TRUE INFORMATION)

Backup Recurrent Neural Network

Ø

19

Figure : Sample Muon and Pion separating variables distributions at 700 MeV

Backup ρ selection kinematic variables

Recurrent Neural Network: deals with sequential data

Comparison Between:

() (20

- Difference : TNN : fixed amount of input data fixed amount of output. RNN : do not take all inputs at once, take them one at a time in a sequence.
- Non-sequential variables: are handled with traditional neural nets. Those features combined with the features from the Recurrent Neural Network gives the feature for separating pion and muon.

Backup ρ selection kinematic variables

Ø

21

Figure : TMVA Input - rho selection variables

Backup ν_{τ} CC vs NC separation kinematic variables

Ø

Figure : TMVA Input - rho selection variables

$\begin{array}{c} \textbf{Backup} \\ \nu_{\tau} \text{ CC vs NC separation kinematic variables} \end{array}$

Ø

Figure : TMVA Input - NC / nutau CC selection variables (in addition rho selection vars and usual kinematic info)