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Define metrics for short- and long-
term nhveire nnales

CP Violation Sensitivity
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* Metric for long-term sensitivity: CPV sensitivity for
50% of 6 values

* Metric for short-term sensitivity: CPV for 6 = -1i/2
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Define metrics for short- and long-
term nhveire nnales

CP Violation Sensitivity
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* Metric for long-term sensitivity: CPV sensitivity for
50% of 6 values

* Metric for short-term sensitivity: CPV for 6 = -1i/2
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Conclusion:

Reference ND is required for long-term, but DIND OK for short-term

CP Violation Sensitivity Early CP Violation Sensitivity
12 8
- DUNE Sensitivity ~ Full ND - DUNE Sensitivity —— Full ND
10 sin'25y =0.008 20005 hick i |- TE ariio, w0008 20062 No/Minimal ND
- sin,, = 0.580 unconstrained " 1Bias - sin’,, = 0.580 unconstrained " 1 Bias

- 50% of &, values 3 Biases B fep=-112 3 Biases

—
xz
-

G=\'

»

[
c=\ﬁf

% 100 200 300 400 500 600 700 800 900 1000 20 40 60 80 100 120 140 160 180 200
Exposure (kt-MW-years) Exposure (kt-MW-years)

* By including “out-of-model” effects (NuWro mock data),
we show that the additional uncertainty in going from
Reference ND to D1ND eliminates long-term goal, but has
minimal impact on short-term goal
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How we get to that conclusion

Use “mock data” from alternate generator (NuWro)

Show that this biases measured 6

Show that this effect is mitigated by the ND

e Using DIND reduces the bias, but does not eliminate it

* Using Reference ND including ND-GAr largely eliminates it

In progress: augment this story by including additional
alternate models (NEUT, GENIE3 alt tunes)
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Producing mock data with event
reweighting

______________________________________________________________________________________________________________
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Figure 4: Multidimensional event reweighting with BDTs: (i) event samples are produced using
two generators, A and B, and a set of 23 truth-level variables & as described in the text is computed
for each event generated; (ii) a BDT is trained to discriminate events between generators A and B

using the truth-level variables #; (iii) the resulting discriminant, s(), approximates a density ratio
which can be recast as a weighting function, wa_,g(I).

 BDT algorithm trained to distinguish GENIE event from
NuWro event based on truth kinematics

* Produces weights that make GENIE look like NuWro in

23-dimensional kinematic space
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Fitting mock data at FD
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* FD is easily able

to fit the mock
data, but best-fit

gets 0 wrong by
~17°

This is small
compared to early
resolution (~30-
60°), but not small
compared to
ultimate
resolution (7-15°)
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Incorporating D1IND

NuWro/GENIE

Visible energy transfer (GeV)
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* Use LAr + TMS reconstruction to reweight the MC as a

function of “Evis” and “pvis”
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Incorporating D1IND
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* With D1ND, nothing is gained by splitting the sample
up into exclusive channels
* Large smearing between channels (20-30%)

* Different channels populate different regions of Evis-pvis
space already, so this single CC inclusive sample suffices
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Incorporating D1IND

Final state confusion matrix in HPgTPC (FHC)

* ND-GAr measurement of 2 '
these quantities is superior % , 088
due to : o

i

* Lack of particle reinteractions
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* Ease of excluding neutrons
from Evis definition
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e Splitting into exclusive channels offers significant
Improvement

* Very little smearing between channels due to superior PID
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Reduced bias with ND-derived
weights to FD prediction

e Use of ND data reduces
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Conclusion:

Reference ND is required for long-term, but DIND OK for short-term

CP Violation Sensitivity Early CP Violation Sensitivity

12 8
| DUNE Sensitivity —— Full ND - DUNE Sensitivity —— Full ND

oF :ﬁ',m SR No/Minimal ND T ::"F‘,m‘:: ke R No/Minimal ND
- sin,, = 0.580 unconstrained """ 1Bias - sin®,, = 0.580 unconstrained " 1 Bias
- 50% of &, values 3 Biases 6 — fp = -1/2 3 Biases

—
xz
-

G=\'

»

[
c=\ﬁf

% 100 200 300 400 500 600 700 800 900 1000 20 40 60 80 100 120 140 160 180 200
Exposure (kt-MW-years) Exposure (kt-MW-years)

* By including “out-of-model” effects (NuWro mock data),
we show that the additional uncertainty in going from
Reference ND to D1ND eliminates long-term goal, but has
minimal impact on short-term goal
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Work In progress: additional mock
data bias studies

* Originally, this study was used to demonstrate a
physics case for ND-GAr

* Now, we are trying to use this study to show that
D1ND is sufficient for early physics

* Mock data study is “existence proof”; it is easier to
prove something is necessary than to prove something
is sufficient

* Hope to augment the case by adding 2 or 3 additional
biases that lead to the same conclusion
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