

Characterization of Gaseous-Ar Operations of the ALICE TPC for the DUNE near detector

Matt Judah, for the DUNE Collaboration **APS April 2021 Meeting** April 19, 2021

DUNE Near Detector Complex

Magnetized (0.5T) high pressure gaseous argon TPC (HPgTPC) surrounded by ECAL calorimeter

Main Purpose:

- Spectrometry for ND-LAr
- Measure charge of final state particles
- Lower detection threshold than LAr

HPgTPC

Pittsburgh

- HPgTPC design will be a copy of the ALICE TPC
 - Using the ALICE readout chambers to construct the HPqTPC
 - Readout chambers are currently being tested
- A few modifications:
 - Higher pressure: 10 atm instead of 1 atm
 - Reference gas mixture: 90:10 Ar:CH₄
 - 1 ton fiducial mass
 - 97% of fiducial neutrino interactions on Ar
 - Need to build a central readout chamber

- Readout chambers are multi-wire proportional chambers with cathode pad readout
- Test readout chambers at various **pressure up to 10 atm**
- Define a base gas mixture for them Ar-CH₄
- Optimize choices on:
 - Necessary anode voltages to keep charge deposition constant with change in pressure
 - Low diffusion → better spatial resolution
 - Purity requirements → minimal O₂ and H₂O to prevent electron attachment

IROC Test Stand

- Test stand at Fermilab
 - GOAT Gaseous-Ar Operation of ALICE TPC
- Pressure vessel rated to 10 atm.
 - Can accommodate 1 IROC with 10 cm drift region

IROC Testing

- Edge pads used to reject cosmic background
- Center pads each peak correspond to Fe-55 x-ray conversion

IROC Testing

University of Pittsburgh

- Edge pads used to reject cosmic background
- Center pads each peak correspond to Fe-55 x-ray conversion
- Use x-ray signal to calculate the gain (right)

OROC Test Stand

- Test stand located at Royal Holloway, University of London
- Pressure vessel rated to 5 atm.
- Accommodates 1 OROC with 40 cm drift region

OROC Testing

- Typical amplitude spectrum of Fe-55 is observed
- Peak position shifts to higher amplitude as anode voltages increases
- Gain distribution on right shows the expected trend

What's Next?

- Operating readout chambers at high pressures for further gain calibration
- Impurities can have a much greater impact at high pressure
 - Attachment increases by a factor of 1000
 - ND-GAr will require stringent impurity limits (< 1 ppm O₂)
- Need to understand these types of factors to refine gain calibration

Gain =
$$\frac{V}{N_0 1.6 \times 10^{-19} e^{-ad} G_e}$$

a: attachment coefficient G_e : electronics gain V: Anode voltage

Summary

- The HPgTPC is an important part of the near detector suite
- Two test stands are testing ALICE's inner and outer readout chambers as a part of the ongoing R&D efforts for the DUNE ND complex
- Both test stands have observed the expected gain calibration at 1 atm.
- Working towards operating these readout chambers at higher pressures

Backups

Deep Underground Neutrino Experiment (DUNE)

- Primary goal of DUNE is to reduce the uncertainties of oscillation measurements to the few % level
- Dominant sources of uncertainty include:
 - ν Flux
 - ν Ar cross section

Constrained by the Near Detector Complex

Benefits of ND-GAr

- Can constrain ν Ar interaction and cross section uncertainties
 - Lower detection threshold than LAr, so sensitive to lower energy charged particles that may not be seen in LAr.
 - Explore differences between simulation and data for these lower energy
- Measure particles that leave ND-LAr and enter MPD
- Reconstruct neutrino energy via spectrometry and calorimetry
- Measure all components of the neutrino flux $(\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}, \bar{\nu}_{e})$

