Run Control Notes & Discussions

10 feb 2021

structure

1. TDR excerpts
a. Useful mental handlebars (during discussions)
Technical proposal
Mappings from TDR goals to technical proposal
4. Demo

w9 b

Main challenges

o First, the high overall experiment uptime goal requires DAQ to be stringently designed for
reliability, fault tolerance, and redundancy, criteria that aim to reduce overall downtime.

e Second, the system must be able to evolve to accommodate newly commissioned sub-components
as they are installed into a detector module that is under construction. The DAQ must also
continue to service existing modules that are operational while simultaneously accommodat-
ing subsequent detector modules as they are installed and commissioned. To support this
ongoing variability, the DAQ will support operating as multiple independent instances or
partitions.

Partitioning will also be supported within a single detector module for special calibration
or debugging runs that are incompatible with physics data taking, while the rest of the
detector remains in physics data taking mode. Partitioning, i.e., allowing several instances
of the DAQ to operate independently with different configurations on different parts of the
detector, will also be important during the installation and commissioning, so experts can
work in parallel, e.g., for photon detectors (PDs) and TPC.

detector components participating to data taking. It provides a central access point for the highly
distributed DAQ components, allowing them to be treated and managed as a single, coherent
system, though their corresponding subsystem interfaces. It is responsible for error handling and
recovery, which is achieved by designing a robust and autonomous fault-tolerant control system.

monitoring subsystem (CCM). The access subsystem is responsible for the action delegation to in-
ternal function calls and procedures. Its implementation is driven by the control, configuration and

monitoring interface specifications, and protects the direct access to detector and infrastructural
resources. It also controls authentication and authorization, which locks different functionalities
to certain actor groups and subsystems. As an example, only the detector experts can modify
front-end configuration through the configuration interfaces, or only an expert user can exclude
an APA’s readout from data taking.

Control, Configuration, and Monitoring System

Actor

«Subsystem» {l «Subsystem» {l
Control Configuration
<<Interface>> <<Interface>>
Control interface | — Configuration interface Infrastructure
A A T
Network
«Subsystem» Internal «Subsystem» E
Access P~ Communication Monitoring
Delegate
rver
<<Interface>> Servers
Monitoring interface
| -
&,
Databases
N s
Detector A4

Software Layer E
A

Hardware Components E

Figure 7.9: Main interaction among the three CCM subsystems.

Control

Control Subsystem

v

Supervision System

«subsystem» {]

Coordinate

<<Interface>> Access
Control interface
<<Interface>>
User Interfaces
+ Graphical Interface
+ Command Line Interface |
i Partition [1..N]
e g A2
E DAQ Application Contiroi «subsystems
1 < Run Control
' <<Interface>>|
1 FSM
: Hierarchical
f <<Interface>>| | Control Tree
! \PC Drive

S T ...

«subsystem» ﬂ Explore |
Process Management

«subsystem» E

Resource Management

Figure 7.10: Roles and services that compose the DAQ control subsystem.

Supervision System - It is responsible for manual and automated control and supervision
of w components at any given time. In autonomous mode, the system makes attempts
for fault-recovery, failover to backup instances of subsystems, and isolation of problematic
regions of the control tree. This is carried out by a hierarchical rule-based planning or fuzzy
logic system.

DAQ Application - The CCM provides interfaces in order to communicate with processes of

the DAQ, and the ability to control and communication with the CCM. The Inter Process
Communication (IPC) supports a mechanism to interact with all actors participating to data

taking. The Finite State Machine (FSM) enforces the possible states and transitions that
are specific to the experiment’s components, and also describes them in a uniform way.

Run Control - This part of the control subsystem coherently steers the data taking operations.
It interacts with all actors participating to data taking in a given partition. It consists of a
hierarchical control tree, which can subdivide the DAQ components into separated regions
that may be acted upon independently.

Resource Management - It provides a global scope of available resources for the DAQ com-
ponents. This includes the mapping between the detector front-end readout units, processes,
servers where they are spawned and required resources for the processes.

Process Management - It is responsible for managing process lifetime.

Configuration Subsystem

<<Interface>>
Configuration interface

<<Interface>>
User Interfaces

+ Graphical Interface
+ Command Line Interface

% Serialization
Provides

«subsystem» E e

Persistency Engine

<
Drives

Read / Write

E Identification
% Change

S Status

Access «subsystem» E
Audit System
Verifies
«subsystem» $:|
Configuration Manager
\ 4

Infrastructure

Configuration
Database

Figure 7.11: Main components of the CCM configuration subsystem.

Configuration Manager - It consists of the three main components of configuration man-
agement systems. The Identification Engine is a set of functionalities that are responsible
for the definition of DAQ components and their corresponding configuration specification.
The Change Manager is responsible for providing control over altering the configuration
specifications of components. The Status Engine is providing status and information about
configuration specifications of individual, or set of DAQ elements.

Audit System - This important subsystem is supporting the experts and decision making sys-
tems to verify the consistency of configuration specifications against the DAQ and detector
components. It provides results on mis-configurations and potential problems on configura-
tion alignment and dependencies between components.

Persistency Engine - This component provides a single and uniform serialization module,
which is strictly followed by every DAQ component. Also responsible for configuration
schema evolution and communication with the configuration database. The storage en-
gine privileges will be only read and write operations, not allowing updates and removal
of configurations. It also provides a redundant session layer for high-availability and load
distribution.

10kt module, contains 150 APAs, 75 DAQ RUs

PDS

Lol 1 L

VdvY
Vdv
Vdv
VdvY
Vdv
Vdv
VdvY
VdvY

I T
| S| S ES ER ES) ooro--, HD) ED D

TPC PDS
| |
1 1

DAQ App
) = = ca I | & friends

7
'
i

.
\

:--{-ru-mc-42 | [ru-pds-42-51 } :

DAQ App Controller ﬂ

prcess gt | [dedctedy |

other app 1

......... other app 2

Process Mgmt

service discovery

.+ Data path « »»

other app 3

service discovery

............. other app 4

Process Mgmt

Control Interface Run Control DAQ App Ctrl

Provide access to config. Is configured with run number Is configured with a desired state
Dictates who can change runconfig (optional) and list of APAs and config for a DAQ App. Sends
when and why. (groups?) to manage. needed commands to reach that
state.
1globally 1globally 1 per partition (probably) 1 per RC
User Interface Control Interface Run Control DAQ App Controller DAQ App Jm
5 : s
TPC/PDS
5 . Scheduler Process Mgmt convoller |1 EER
Oopsie Manager !
Receives a list of APAs. Receives a machine-local set of
events = s ' Translates it to host:felix_address (DAQ) applications supposed to other app
’_J : ; and manages creation and be running. Manages creation and
V upkeeping of DAQ Apps there upkeeping.
Configuration Manager |-« ««eeeeceeeeeaaaocdoceadoacacca . 2l ||
g g ‘ Scheduler / 1 Process Mgmt
. Resource Mgmt v
1globally ' :
: 1 per RC + |1 for each schedulable host

Config Mgmt Y

Run Registry

Responsible for keeping system
desired state, enforce/evolve 1globally

schemas, audit config chang 2
SEEicniiiaida Run Registry

Historical data of run configs.

P rO Ce S S M a n a ge m e n t o Process Management - It is responsible for managing process lifetime.

Goal: Keep track of application health : . l l l l
- “Application” is generic, can be anything (non-DAQ apps) E%Seﬁzg
— Because we keep things generic, we can use existing solutions : -
L, E.g. SupervisorD, Nomad, SystembD, ...
- DAQ specific management -> Application Manager | W‘W> > ru-pds-;12-51 -l
/
Lives close to the actual applications
— Minimize time to detect and act on anomalies =
— Prevent network from causing failures at this fundamental level Process Mgmt | === St

Hence, instance of Process Management runs at every schedulable entity

Manages

Application lifecycle
Helper processes (e.g. local log collector) otherapp1 |-« «xe- . other app 2
First-Aid failure procedures
Basic health checks : :
Basic performance checks . g ; 5
Resource Quota enforcement : 22,

\

Ll

DAQ Application Manager

Supplements Process Manager

—

Provides DAQ-specific process management (the DAQ state machine)

Goals: given a (list of) application(s) and their desired state

— perform needed state transitions to achieve desired state.
Manages

- DAQ-specific lifecycle

- First-Aid failure procedures

— Basic health checks

DAQ App Ctrl

Is configured with a desired state
and config for a DAQ App. Sends
needed commands to reach that

state.

(probably) 1 per RC

— DAQ App Controller DAQ App Mﬁﬁ
TPC/PDS I
ocess Mg mt Controller EH
sives a machine-local set of
other app

Y) applications supposed to

Inning. Manages creation and

o Resource Management - It provides a global scope of available resources for the DAQ com-

S C h e d u l e r ponents. This includes the mapping between the detector front-end readout units, processes,
servers where they are spawned and required resources for the processes.

Scheduling is hard R

Discussed here: https://youtu.be/NVI9cliPF80?t=101 mlmlm|m | meese
Very recommended to build on existing work ik
| EEEE i i

Implemented using various kinds of labels

— Resource labels DAQ App Controller

L “This application is meant for board <id>"

| dedicated:ru

L “This application needs <amount> of <resource>" Process Mgmt | | Ceeer |

-]

— Dedication labels
L Only apps meant for <label> are to be scheduled here

— Labels can be hard or soft
L “I must have a GPU, I prefer to have the latest one”

L “I prefer to have this other app closeby”— d

Guaranteed: No board can be scheduled to more than one application at a time

other app 1
| omerapp 1 |

other app 2

Assumption: No board can be used by two partitions at once

— Restriction could be lifted, but scheduling safeties would be lost

Process Mgmt

service discovery

https://youtu.be/NVl9cIiPF80?t=101

Run Control

Goals:

— Given a desired run description, create needed resources
L DAQ applications at the right places

L Configs

¥ (for now) merely pass-through (or very close)

— Determine overall state based on performance of sub-resources pp——-

— Fault-recovery, or at least try

Works at partition-level

1globally

Control Interface

o Supervision System - It is responsible for manual and automated control and supervision
of DAQ components at any given time. In autonomous mode, the system makes attempts
for fault-recovery, failover to backup instances of subsystems, and isolation of problematic
regions of the control tree. This is carried out by a hierarchical rule-based planning or fuzzy
logic system.

o Run Control - This part of the control subsystem coherently steers the data taking operations.
It interacts with all actors participating to data taking in a given partition. It consists of a
hierarchical control tree, which can subdivide the DAQ components into separated regions
that may be acted upon independently.

v

Supervision System

Coordinate

Y

«subsystem»
- Run Control

Hierarchical
Control Tree

Drive
|

A

state.
1 per partition (probably) 1 per RC
Run Control DAQ App Controller

Interface

For now: CLI access

Future:
— CLI and REST API access
- Web GUI(s)

$ runcontrol <command> [...subcommand] [parameters]
$ runcontrol login

$ runcontrol config apply --file ./mystuff.json

ERROR: missing permissions to change <jsonpath>

$ runcontrol exclude --by-id ru-tpc-42

ERROR: ru-tpc-42 is not used in any partition

$ runcontrol config get partitions

NAME STATUS RUN-NUMBER
main-runcontrol Running 1

gldirkx-calibrations Failed 56

o Configuration Manager - It consists of the three main components of configuration man-

agement systems. The Identification Engine is a set of functionalities that are responsible
for the definition of DAQ components and their corresponding configuration specification.
The Change Manager is responsible for providing control over altering the configuration
specifications of components. The Status Engine is providing status and information about
configuration specifications of individual, or set of DAQ elements.

Audit System - This important subsystem is supporting the experts and decision making sys-
tems to verify the consistency of configuration specifications against the DAQ and detector
components. It provides results on mis-configurations and potential problems on configura-
tion alignment and dependencies between components.

Persistency Engine - This component provides a single and uniform serialization module,
which is strictly followed by every DAQ component. Also responsible for configuration
schema evolution and communication with the configuration database. The storage en-
gine privileges will be only read and write operations, not allowing updates and removal
of configurations. It also provides a redundant session layer for high-availability and load
distribution.

Control Interface

Provide access to config.
Dictates who can change runconfig
when and why.

1globally 1globally

User Interface Control Interface

f

to certain actor groups and subsystems. As an example, only the detector experts can modify
front-end configuration through the configuration interfaces, or only an expert user can exclude

an APA’s readout from data taking.

o Configuration Manager - It consists of the three main components of configuration man-
. o agement systems. The Identification Engine is a set of functionalities that are responsible
for the definition of DAQ components and their corresponding configuration specification.
C O n ﬁ g u rat I O n M a n age I I l e nt The Change Manager is responsible for providing control over altering the configuration
specifications of components. The Status Engine is providing status and information about
configuration specifications of individual, or set of DAQ elements.

Go al S o Audit System - This important subsystem is supporting the experts and decision making sys-
. .) i tems to verify the consistency of configuration specifications against the DAQ and detector
— Recelve deS | red COI’]ﬁgU ration components. It provides results on mis-configurations and potential problems on configura-
o o tion alignment and dependencies between components.

L Perform validations, rbag, ... ‘ O Sep o IR DR s TN . o
. o Persistency Engine - This component provides a single and uniform serialization module,
d Deliver relevant Conﬁguratlon to sections In System which is strictly followed by every DAQ component. Also responsible for configuration
RN Receive status info on desired Conﬁgu ration sections schema evolution and communication with the configuration database. The storage en-

gine privileges will be only read and write operations, not allowing updates and removal
of configurations. It also provides a redundant session layer for high-availability and load

Welcome to state distribution distribution.
Welcome to hell “Subsy;emn
https://www.yvoutube.com/watch?v=fE2KDzZaxvE Configuration Manager 2 |

»
0 . . Identification
Highly recommended to use existing solutions E
E Status

https://www.youtube.com/watch?v=fE2KDzZaxvE

Configuration Management & Distribution: RAFT

What
- manages source of truth of system state (all configs from aforementioned apps, all partitions)
- Running on all RC machines

- Complex, error prone networking code contained
L Apps update/receive config using local librarian, librarian propagates config
L No duplicated code of critical aspect of RC: networking
— Reliability
L If app crashes, a restart will restore working operation much quicker
% Just resume comparing current state with desired state, no desired state recovery
L If one or more control-plane apps crash
¥ System might partially make forward progress (manage DAQ App states but be unable to schedule anew)
% Worst case: whole system goes in read-only mode
% No impact on deadtime (if root cause only applies to RC)
¥ The above also applies to nasty problems in CAP theorem (e.g. split brain)
- Entire state known to all participants
L' No need to figure out what to get from whom
% Smarter controllers

Caution
— Extra moving piece
— Off the shelf solutions need to be tuned for RC

What’s next

Implement prototype
— Demo of 2 DAQ apps running under run control

Functional demo exists today
- Real ‘dag_application’s
— Ttems from previous slides either implemented or have a logical implementation path
- Pathway to other interesting concepts (reliability engineering, operators, ...)

Develop further and get into ‘real’ setup asap
— Deploy to testing area
- Resilience testing (e.g. chaos days)
— Reflect on choices

» controllers git:(main) x run-control get partitions
NAME RUN-NUMBER STATUS

partition-sample 5 happy
» controllers git:(main) «x

Config cascade

apiVersion: rc.ccm.dunescience.org/v0alpha0

» controllers git:(main) x run-control get partitions
RUN-NUMBER STATUS

partition-sample 5 happy

» controllers git:(main) x

» controllers git:(main) x run-control get DAQApplications
NAME DAQ STATE STATUS

ru-42-51-apa-pds-a STARTED happy
ru-42-apa-tpc-a STARTED
ru-43-apa-tpc-a STARTED happ

controllers git:(main) x run-control get pods
READY STATUS RESTARTS
1/1 Running O
ru-42-51-apa-pds-a-6cb8896bc5-tdqt2 171 Running 0
ru-42-apa-tpc-a-7788c8c8cc-wt281 1/1 Running 0
ru-43-apa-tpc-a-99475c6f9-7nb49 1/1 Running 0
» controllers git:(main) x []

Real DAQ Apps

» controllers git:(main) x kubectl get pods

NAME
dev

ru-42-51-apa-pds-a-6cb8896bc5-vowsf
ru-42-apa-tpc-a-7788c8c8cc-dfg26
ru-43-apa-tpc-a-99475c6f9-jhdtk

READY
171
171
1/1
1/1

STATUS

RESTARTS

Running 0

Running 0

Running 0

Running 0

» controllers git:(main) x ps -aux | grep daq_application
Sl

root 33068 0.0 0.0 1053300 9724 2 14:36
root 33074 91.8 1.7 2212120 572092 ? SL1 14:36
root 35790 0.0 0.0 986356 9636 ? S1 14:36
root 35799 90.3 1.7 2212120 571980 ? SL1 14:36
root 36079 0.0 0.0 855284 8980 ? S1 14:36
root 36089 0.0 0.0 868584 27144 > SL1 14:36
glenn 39080 0.0 0.0 6392 2344 pts/5 R+ 14:44
> controllers git:(main) x JJ

> controllers git:(main) x kubectl logs ru-42-apa-tpc-a-7788c8c8cc-dfg26 | grep DAQModuleManager
rappfwk: :DAQModuleManager:
: :DAQModuleManager
: : DAQModuleManager
: : DAQModuleManager
: : DAQModuleManager
: :DAQModuleManager
: : DAQModuleManager
: :DAQModuleManager
: :DAQModuleManager
: :DAQModuleManager
: :DAQModuleManager
: :DAQModuleManager
: :DAQModuleManager
: :DAQModuleManager
: :DAQModuleManager
: : DAQModuleManager
: : DAQModuleManager
: :DAQModuleManager
: : DAQModuleManage

2021-Feb-10 14:36:44,433 LOG [dunedaq:

2021-Feb-10 144,434 INFO [dunedaq:
2021-Feb-10 144,434 INFO [dunedaq::
2021-Feb-10 144,434 INFO [dunedaq::
2021-Feb-10 144,434 INFO [dunedaq::
2021-Feb-10 144,434 INFO [dunedaq::
2021-Feb-10 144,434 INFO [dunedaq::
2021-Feb-10 144,434 INFO [dunedaq::
2021-Feb-10 144,434 INFO [dunedaq::
2021-Feb-10 144,434 INFO [dunedaq::
2021-Feb-10 144,434 INFO [dunedaq::
2021-Feb-10 144,434 INFO [dunedaq::
2021-Feb-10 144,434 INFO [dunedaq::
2021-Feb-10 144,517 INFO [dunedaq::
2021-Feb-10 144,530 INFO [dunedaq::
2021-Feb-10 144,539 INFO [dunedaq::
2021-Feb-10 144,543 INFO [dunedaq::
2021-Feb-10 144,615 INFO [dunedaq::
2021-Feb-10 144,625 INFO [dunedaq::
2021-Feb-10 144,737 LOG [dunedaq::
2021-Feb-10 144,740 LOG [dunedaq::
2021-Feb-10 144,740 LOG [dunedaq::
2021-Feb-10 144,740 LOG [dunedaq::
2021-Feb-10 144,817 LOG [dunedaq::
2021-Feb-10 144,827 LOG [dunedaq::
2021-Feb-10 :36:44,829 LOG [dunedaq::
2021-Feb-10 14:36:44,830 LOG_[dunedaq: :

» controllers git:(main) x

: :DAQModuleManager:

xecute(..

DAQModuleManager
DAQModuleManager
DAQModuleManager
DAQModuleManager
DAQModuleManager
DAQModuleManager
DAQModuleManager

xecute(.

init_queues(..
init_queues(...
init_queues(...
init_queues(...
init_queues(...
init_queues(..
init_queues(...
init_queues(...
init_queues(...
init_queues(...
init_queues(...
init_modules(...
init_modules(...
init_modules(...
init_modules(...
init_modules(...
init_modules(...
init modules(4

ispatch_one_match_only(..

:dispatch_one_match_only(...

0:00
7:34
0:00
7:18
0:00
0:00
0:00

AGE

6h48m
8m34s
8m34s
8m34s

./pretender
daq_application -c stdin:///mnt/minidaq_config.json
./pretender
daq_application -c stdin:///mnt/minidaq_config.json
./pretender
daq_application -c stdin:///mnt/minidaq_config.json
grep --color dag_application

-p 80 daqg_application -c stdin:///mnt/minidaq_config.json
-p 80 dag_application -c stdin:///mnt/minidaq_config.json

-p 80 daq_application -c stdin:///mnt/minidaq_config.json

.) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:225] Command id:init
.) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:71] Adding queue: data_fragments_q
) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:71] Adding queue: data_requests_0
) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:71] Adding queue: data_requests_1
) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:71] Adding queue: fake_link_0
) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:71] Adding queue: fake_link_1
.) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:71] Adding queue: time_sync_q
) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:71] Adding queue: trigger_decision_copy_for_bookkeeping
) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:71] Adding queue: trigger_decision_copy_for_inhibit
) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:71] Adding queue: trigger_decision_q
) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:71] Adding queue: trigger_inhibit_q
) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:71] Adding queue: trigger_record_q
) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:35] construct: TriggerDecisionEmulator : tde
) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:35] construct: RequestGenerator : rqg
) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:35] construct: FragmentReceiver : ffr
) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:35] construct: DataWriter : datawriter
) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:35] construct: FakeCardReader : fake_source
) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:35] construct: DatalinkHandler : datahandler_0
.) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:35] construct: DatalLinkHandler : datahandler_1
.) at /scratch/dlngpf/dunedaq -v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:225] Command id:conf
ispatch_one_match_only(...) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:204] Executing conf -> tde
ispatch_one_match only(...) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:204] Executing conf -> rqg
ispatch_one_match_only(...) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:204] Executing conf -> ffr
ispatch_one_match_only(...) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:204] Executing conf -> datawriter
.) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:204] Executing conf -> fake_source
ispatch_one_match_only(...) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:204] Executing conf -> datahandler_0
) at /scratch/dingpf/dunedaq-v2.2.0-prep/workdir/sourcecode/appfwk/src/DAQModuleManager.cpp:204] Executing conf -> datahandler_1

Containerization & Device access

As for access:
— Privileged containers have all device access like running outside a container
L Vendor plugins merely give this kind of access without needing privileged pods
- Tested
L File-descriptor based access, memory mapping (DMA) work
L Verified locally using bare C (but not Physics boards, I don’t have access)
L Fd based access verified with CMS colleagues

As for performance:
— Underlying mechanisms provided by kernel
L Process isolation, filesystem layers, ...
- Network is not software emulated
L Again leverages kernel, no packet encapsulation (unless you really want to...)
L, https://docs.projectcalico.org/about/about-calico

https://docs.projectcalico.org/about/about-calico

e: daq-app-42-2 daq-app-42-6d44bcbf65-n94xg 171 Running 0 81s

RS controllers git:(main) x kubectl get pods
NAME READY STATUS RESTARTS AGE
daq-app-42-2-6d44bcbf65-g2c9s 0/1 Pending 0 81s

dev 171 Running O 6h56m

Type Reason Age From Message

Warning FailedScheduling rPS (x3 over 86s) default-scheduler 0/1 nodes are available: 1 Insufficient rc.ccm/ru-42-apa-
b PR e P e

: dedicated
erator: Equal
lue: apa

t: NoSchedule

Inter-pod affinity and anti-affinity (beta feature)

Inter-pod affinity and anti-affinity were introduced in Kubernetes 1.4. Inter-pod affinity and anti-
affinity allow you to constrain which nodes your pod is eligible to schedule on based on labels on pods
that are already running on the noderather than based on labels on nodes. The rules are of the form
"this pod should (or, in the case of anti-affinity, should not) run in an X if that X is already running one
or more pods that meet rule Y."Y is expressed as a LabelSelector with an associated list of namespaces
(or "all" namespaces); unlike nodes, because pods are namespaced (and therefore the labels on pods
are implicitly namespaced), a label selector over pod labels must specify which namespaces the
selector should apply to. Conceptually X is a topology domain like node, rack, cloud provider zone,
cloud provider region, etc. You express it usinga topologykey which is the key for the node label that
the system uses to denote such a topology domain, e.g. see the label keys listed above in the section
Interlude: built-in node labels.

Using Admission Controllers

This page provides an overview of Admission Controllers.

What are they?

An admission controller is a piece of code that intercepts requests to the Kubernetes APl server prior to persistence of the object, but after the request is authenticated and authorized. The controllers consist of the list below, are compiled
into the kube-apiserver binary, and may only be configured by the cluster administrator. In that list, there are two special controllers: MutatingAdmissionWebhook and ValidatingAdmissionWebhook. These execute the mutating and

validating (respectively) admission control webhooks which are configured in the API.

Admission controllers may be "validating”, "mutating”, or both. Mutating controllers may modify the objects they admit; validating controllers may not.

Admission controllers limit requests to create, delete, modify or connect to (proxy). They do not support read requests.

The admission control process proceeds in two phases. In the first phase, mutating admission controllers are run. In the second phase, validating admission controllers are run. Note again that some of the controllers are both.

MutatingAdmissionWebhook

This admission controller calls any mutating webhooks which match the request. Matching webhooks are called in serial; each one may modify the object if it desires.

This admission controller (as implied by the name) only runs in the mutating phase.

If a webhook called by this has side effects (for example, decrementing quota) it must have a reconciliation system, as it is not guaranteed that subsequent webhooks or validating admission controllers will permit the request to finish.

If you disable the MutatingAdmissionWebhook, you must also disable the MutatingwebhookConfiguration objectinthe admissionregistration.k8s.io/vi group/version viathe --runtime-config flag (both are on by default in versions >=
1.9).

extras

Oopsie manager

Receives events upon which to potentially act
— Suspicious log entry event
- alert from monitoring system
— external application event

Might be rule based
This might not be a centralized application

Modern day relative: the Operator Pattern
https://www.youtube.com/watch?v=DhvYINMOh6A

o Supervision System - It is responsible for manual and automated control and supervision
of DAQ components at any given time. In autonomous mode, the system makes attempts
for fault-recovery, failover to backup instances of subsystems, and isolation of problematic
regions of the control tree. This is carried out by a hierarchical rule-based planning or fuzzy

logic system.

1globally

1globally

User Interface

Control Interface

1 per partition

Run Control

Oopsie Manager

events

?_I

https://www.youtube.com/watch?v=DhvYfNMOh6A

Table 7.4: Data Acquisition System Interface Links.

TPC CE

Data rate and format, number
and type of links, timing, inher-
ent noise

DocDB 6742 [68]v6

PDS Readout

Data rate and format, number
and type of links, timing

DocDB 6727 [86]v2

Computing Off-site data transfer rates, DocDB 7123 [135]
methods, data file content,
disk buffer, software develop-
ment and maintenance

CISC Information exchange, hard- DocDB
ware and software for rack and 6790 [136]v1
server monitoring

Calibration Constraint on total volume of DocDB 7069 [122]

the calibration data; trigger
and timing distribution from
the DAQ

Timing and Synchronization

Clients, clock frequency, proto-
cols, transports, accuracy, syn-
chronization precision, moni-
toring

DocDB 11224 [137]

Facilities Detector integration, coordina- DocDB
tion, cables, racks, safety, con- 6988 [138]v1
ventional facilities, lack of im-
pact on cryo and DSS

Installation Prototyping, planning, trans- DocDB 7015 [139]

port, underground equipment
and activity, safety

Partition awareness

Pieces that require partition awareness
- Run control

Others: useful to include partition info where convenient
- Useful as metadata in logging/monitoring data

Run Controller

Manages global config
Instructs scheduler and App Controller(s)

Data:
= run number (can self generate)
- Desired APAs and modes (running/calibrating/...)

Run Registry

Keeps history of runs and configs
— Likely to be an external system

Data (per run number):
- Eventtimes
L Given to run control
L Start of operations (start of term)
L End of term
L Last item removed (=start of term next run)

DAQ App Controller

Responsible for making sure a DAQ App is running & configured correctly

Data
- Run number
- Desired app config

A

New desired config = restart DAQ App + init + config + start
If run number changes, but desired config otherwise identical; if dag application supports it, we could drastically reduce
new run setup time by just updating run number without destroy/startup of new DAQ App
— Easy to run locally
L Bonus: local dev becomes easier and is representative of real operations
— Controller runs as close as possible to DAQ App
L Very quick state polling & changes

)

Scheduler

Responsible for keeping all applications for a set of APAs running

Data:
— List of APAs
- Lookup table
L What boards & hostnames are connected to which APAs

Process Controller

Responsible for keeping all applications for a host running
— A host being any machine able to receive schedulables

Data:
- List of applications
L What FELIX board it will use

API Manager

— Place where to get whole state

L Users don’t need to bother with what data to get where
— Accountability

L SSO integration

L Policies

