Theory working group

Julian Heeck

Mu2e-II Snowmass22 Workshop VII

3/3/2021

Theory working group

- Julian Heeck (University of Virginia)
- Lorenzo Calibbi (Nankai University)
- Members:
 - Robert Szafron (BNL)
 - Yuichi Uesaka (Kyushu Sangyo University)
- Mailing list: mu2eii-theory@fnal.gov

Comments, questions, and members welcome!

Current focus: targets

- "Good" (first) target?
 - Mostly experimental question.
 - Some targets are good for setting limits (many isotopes and spins).
 - Some targets are convenient in case of detection (single isotope, nuclear structure known).
- Good second target after Al?
 - Want complementarity, probe orthogonal operators.
 - High-Z targets ideal... [Kitano, Koike, Okada, hep-ph/0203110]
 - Low-Z for experimental reasons.

Complementarity of second target

$$\mathsf{BR}(\mu \to \mathsf{e}) \propto |\mathsf{DC_{DL}} + \mathsf{S^pC_{S,L}^p} + \mathsf{V^pC_{V,R}^p} + \mathsf{S^nC_{S,L}^n} + \mathsf{V^nC_{V,R}^n}|^2 + (\mathsf{L} \leftrightarrow \mathsf{R})$$

• If you measure $\mu \rightarrow e$ on Al you want a second target that is sensitive to Al's blind directions. [Davidson, Kuno, Yamanaka, 1810.01884]

Lithium-7 best among Z < 30 targets!

	$ au_{\mu}/\mathrm{ns}$	spin	NA	DIO
$\frac{7}{3}$ Li	2187	3/2	92%	_
$_4^9\mathrm{Be}$	2168	3/2	100%	_
$_{23}^{51}\mathrm{V}$	280	7/2	99.8%	_
$^{55}_{25}\mathrm{Mn}$	230	5/2	100%	
⁴⁸ ₂₂ Ti	329	0	74%	yes
$^{27}_{13}$ Al	865	5/2	100%	yes

Mu2e-II 3/3/21

Julian Heeck

Complementarity of second target

$$\mathsf{BR}(\mu \to \mathsf{e}) \propto |\mathsf{DC_{DL}} + \mathsf{S^pC_{S,L}^p} + \mathsf{V^pC_{V,R}^p} + \mathsf{S^nC_{S,L}^n} + \mathsf{V^nC_{V,R}^n}|^2 + (\mathsf{L} \leftrightarrow \mathsf{R})$$

• If you measure $\mu \rightarrow e$ on Al you want a second target that is sensitive to Al's blind directions. [Davidson, Kuno, Yamanaka, 1810.01884]

Lithium-7 best among Z < 30 targets!

	$ au_{\mu}/\mathrm{ns}$	spin	NA	DIO	_
$\frac{7}{3}$ Li	2187	3/2	92%		-
$_4^9\mathrm{Be}$	2168	3/2	100%	_	2
$_{23}^{51}\mathrm{V}$	280	7/2	99.8%	_	•
$^{55}_{25}\mathrm{Mn}$	230	5/2	100%		_
⁴⁸ ₂₂ Ti	329	0	74%	yes	- -
$^{27}_{13}$ Al	865	5/2	100%	yes	-

5

Mu2e-II 3/3/21 Julian Heeck

DIO for V, Mn, etc.

• Full calculation tedious, focus on endpoint:

$$\left. \frac{1}{\Gamma_0} \frac{d\Gamma}{dE_e} \right|_{E_e \sim E_\mu - \frac{E_\mu^2}{2m_N}} \equiv B \left(E_\mu - E_e - \frac{E_e^2}{2m_N} \right)^5$$

[Czarnecki, Tormo, Marciano, 1106.4756]

- Coefficient B obtained by numerically solving Dirac equation for muon and electron in electric field of nucleus.
- Given by Czarnecki et al for Al, Ti, Cu, Se, Sb, Au.

We (Yuichi) are currently trying to reproduce results and extend to new nuclei.

- Percent-level agreement, except for Ti (~10%).
- Currently investigating difference.

Next steps

- Extend to Z < 10 elements.
- Update underlying nuclear charge distributions.
- Quantify isotope dependence of DIO.

Next steps

- Extend to Z < 10 elements.
- Update underlying nuclear charge distributions.
- Quantify isotope dependence of DIO.
- Revisit overlap integrals. [Kitano, Koike, Okada, hep-ph/0203110]
 - Update proton and neutron distributions.
 - Study isotope dependence (new).
 - Re-evaluate second-target complementarity with Al.

Next steps

- Extend to Z < 10 elements.
- Update underlying nuclear charge distributions.
- Quantify isotope dependence of DIO.
- Revisit overlap integrals. [Kitano, Koike, Okada, hep-ph/0203110]
 - Update proton and neutron distributions.
 - Study isotope dependence (new).
 - Re-evaluate second-target complementarity with Al.

Thanks!