

Neutron update and transition to 1x2x6

Aran Borkum

Updated PU-Foam Composition

Measured definition of PU foam composition

- Atomic composition: C₅₄H₆₀O₁₅N₄, density 0.09 g/cc
- Estimated capture rate reduction:
 - 75cm * 0.09 g/cc = 6.75 g cm⁻²
 - It is known that 10cm of CH2 (9.2 g cm⁻²) attenuates neutrons by factor 10-20
 - Accounting for thickness and hydrogen content we can expect attenuation of 3-5 (ish)

Capture rate results

- Capture rate before insulation applied in geometry: 116.37 Hz
- Capture rate after insulation applied in geometry: 19.75 Hz
- Attenuation factor: 5.9
- This is higher than the estimated range, however the estimation doesn't take into account the attenuation from the C, N, O

Updates in GEANT4

Pre larsoft v08_62_00 (before August 2020)

- GEANT4 v4_10_3_p03b was being used
- Nuclear data library: G4NDL4.5
- Neutron cross sections below 20 MeV come from ENDF/B-VII.1

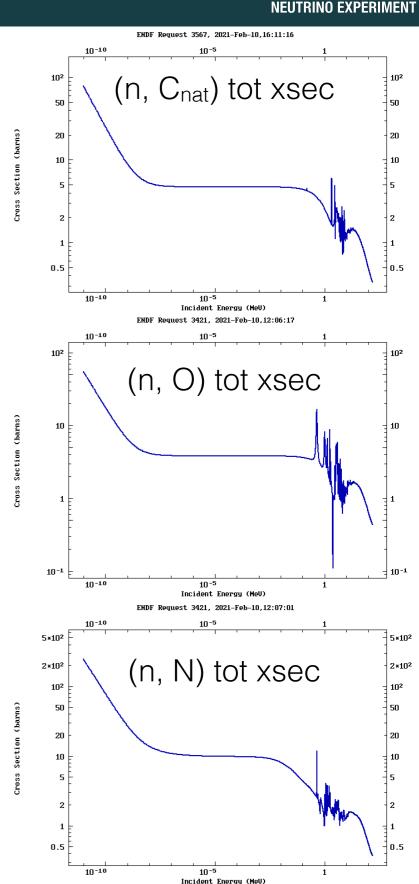
Post larsoft v08_62_00 (after August 2020)

- GEANT4 v4_10_6_p01 is now being used
- Nuclear data library updates to G4NDL4.6
- Neutron cross sections below 20 MeV come from JEFF-3.3

Packages I've used

- For the task force review (work done from May July) larsoft v08_43_00, pre GEANT4 update
- More recently updated to larsoft v09_08_00 (live since October 2020)

Cross section comparisons



Carbon, oxygen and nitrogen cross sections

- All elements have resonances at ~1 MeV
- These will contribute to neutron attenuation
- Small peak at 0.1 MeV in carbon cross section coming from the similar peak in the C-13 cross section

Overview

- There are no earth shattering changes between the different libraries
- It is very unclear why results have varied as they have

Neutron capture rate by main sources

Source by source breakdown

- Dominant source: Shotcrete

- Next leading source: Cavern rock

- Total capture rate: 3 Hz

	Rock	Concrete	Shotcrete	I-Beams	Warm Skin	Cold Steel	Total
Capture Rate [Hz]	1 / 1 / 1	1.13E-01	1.35	2.13E-01	8.53E-02	2.03E-01	3.00

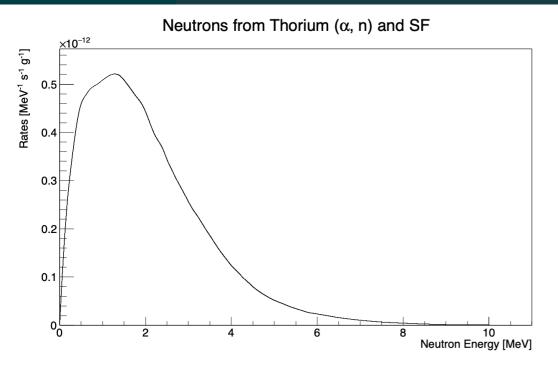
Scaling results to 1x2x6 workspace geometry

Spectra for 1x2x6 sims

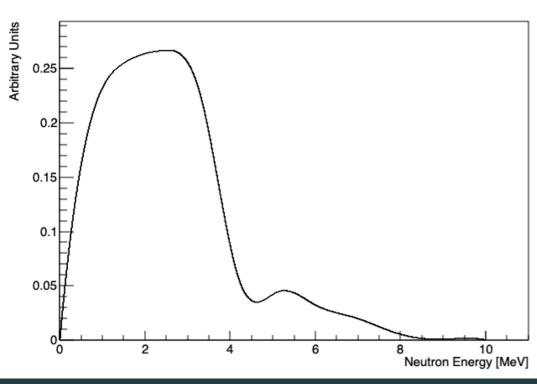
- For each neutron:
 - Measure the energy of the particle IF is crosses into the LAr
 - Populate a TH1D with these energy values
 - Fit, as best as possible, a curve to the histogram
 - Produce relevant 10,000 point TGraph as input for new 1x2x6 sim
- All spectra now in: /dune/app/users/aborkum/v09_08_00_prof_e19_py2/localProducts_larsoft_v09_08_00_e19_prof/dunetpc/v09_09_01/gdml/Radionuclides

Scaling fluxes for 1x2x6 sim

- For each source stand alone sims of 100,000 events were run
- Capture rate recorded for each
- Flux value tuned to get capture rate to match that seen in full geometry


Verifying the results

- All 18 sources run simultaneously using new radiological model fhicl
- Total capture rate recorded to be 2.8 Hz (close enough?)



Scaling results to 1x2x6 workspace geometry

Conclusion and future work

Capture rate

- All main sources analysed
- Combined neutron capture rate of 3 Hz

Workspace simulation

- Scaling of sources now complete
- Ready to be applied to new radiological model
- I'm trying to run jobs to see how this impacts the Marley + background results
- As soon as they stop getting held up will investigate clustering/triggering/SNB efficiencies