Towards Background Model 2

Fang Xie DUNE BGTF Meeting 10 Feb 2021

Background Model 2

Position	Isotope	Activity/Unit	Reference				
LAr	$^{39}\mathrm{Ar}$	$0.00141~\mathrm{Bq/cc}$	MCC11				
LAr	$^{42}\mathrm{Ar}$	$0.0001283768 \ {\rm Bq/cc}$	MCC11				
LAr	$^{85}\mathrm{Kr}$	$0.00016~\mathrm{Bq/cc}$	MCC11				
LAr	222 Rn	$0.0000014~\mathrm{Bq/cc}$	New Goal				
APA frame steel	$^{60}\mathrm{Co}$	$0.000082~\mathrm{Bq/cc}$	MCC11, MPIK				
APA frame steel	$^{238}\mathrm{U}$	$0.0216~{\rm Bq/cc}$	Requirement				
APA frame steel	232 Th	$0.00018~\mathrm{Bq/cc}$	ProtoDUNE I Beam				
APA CuBe wires	U early	$0.000000258 \ {\rm Bq/cc}$	Measurement				
APA CuBe wires	U late	${\leq}0.0000000034~{\rm Bq/cc}$	Measurement				
APA CuBe wires	Th early	$0.000000086~{\rm Bq/cc}$	Measurement				
APA CuBe wires	Th late	$0.00000001 \ {\rm Bq/cc}$	Measurement				
APA CuBe wires	$^{40}\mathrm{K}$	$0.0000039~\mathrm{Bq/cc}$	Measurement				
APA electronic boards	$^{40}\mathrm{K}$	$0.0000037~\mathrm{Bq/cc}$	Majorana				
APA electronic boards	$^{238}\mathrm{U}$	$0.0000058~\mathrm{Bq/cc}$	Majorana				
APA electronic boards	232 Th	$0.0000036~\mathrm{Bq/cc}$	Majorana				
CPA	$^{40}\mathrm{K}$	$0.0027195~\mathrm{Bq/cc}$	MCC11				
CPA	$^{238}\mathrm{U}$	$0.06105~\mathrm{Bq/cc}$	Requirement				
PDs	222 Rn	$0.000005~\mathrm{Bq/cc}$	MCC11				
PDs	$^{210}\mathrm{Po}$	$0.0000001~\mathrm{Bq/cc}$	Estimation				
Field Cage	^{40}K	$0.000348~\mathrm{Bq/cc}$	EDELWEISS				
Field Cage	226 Ra	$0.000216~\mathrm{Bq/cc}$	EDELWEISS				
Field Cage	$^{228}\mathrm{Th}$	$0.000427~\mathrm{Bq/cc}$	EDELWEISS				
Table 1: Background Model 2							

- Same as BG Model 1.0
- New radiopurity goal
- Measurements of materials
- Estimation based on others' experiments.

Full table available here: <u>https://www.overleaf.com/6175337632brpsxjfxmryc</u>

New Radiological fcl File

- Materials: more materials are now included, such as APA wires, Field Cage, etc.
- Isotopes: more radioactive isotopes in detector components and materials, especially those from ²³²Th Chain and ²⁰⁸TI.
- Activities: up-to-date activity.

Isotopes in U and Th Chains

Checked the whole decay chain to make sure we have all "dangerous" alpha and beta emitter considered.

isotope	decay mode	energy (MeV)	in decay0	note							
238U	alpha	4.270	ves		isotope	decay mode	energy (MeV)	in decay0	note		
234 Th	beta	0.273	ves		232 Th	alpha	4.083	no			
234m Pa	beta	2.195	yes		$^{228}\mathrm{Ra}$	beta	0.046	yes			
$^{234}\mathrm{U}$	alpha	4.859	yes		$^{228}\mathrm{Ac}$	beta	2.127	yes			
230 Th	alpha	4.770	yes		$^{228}\mathrm{Th}$	alpha	5.520	no			
226 Ra	alpha	4.871	yes		224 Ra	alpha	5.789	no			
222 Rn	alpha	5.590	yes		220 Rn	alpha	6.405	no			
$^{218}\mathrm{Po}$	alpha	6.114	yes	beta (0.02%) Q=0.265	216 Po	alpha	6.907	no			
$^{214}\mathrm{Pb}$	beta	1.024	yes		$^{212}\mathrm{Pb}$	beta	0.574	ves			
$^{214}\mathrm{Bi}$	beta (99.979%)	3.272	yes	to ²¹⁴ Po	^{212}Bi	beta (64.06%)	2.254	ves	to ²¹² Po		
	alpha (0.021%)	5.617	yes	to 210 Tl		.l.l. (25.0407)	0.007	5.00	208701		
214 Po	alpha	7.833	yes	BiPo event		alpha (35.94%)	6.207	yes	to 200 11		
$^{210}\mathrm{Tl}$	beta	5.489	no		212 Po	alpha	8.954	yes	BiPo event		
$^{210}\mathrm{Pb}$	beta	0.063	yes	alpha(1.9E-6%)	208 Tl	beta	5.001	yes			
$^{210}\mathrm{Bi}$	beta	1.162	yes	alpha(1.32E-4%) Q=5.036 Table 2: Alpha and beta emitters in ²³² Th Chain.							
210 Po	alpha	5.407	yes								

Table 1: Alpha and beta emitters in $^{238}\mathrm{U}$ Chain.

Full table available here: <u>https://www.overleaf.com/6175337632brpsxjfxmryc</u>

Adding TI208 & TI210

Added some decays that were not considered in MCC11, such as: TI208, TI210. BiPo event was generated automatically, but the TI was ignored in the past. And unfortunately can not be simply added to the chain.

My solution: treat them as separate isotopes, and use the modified activity = branching ratio * activity of the Th232/U238 chain respectively.

Positive ⁴²K ions

 GERDA observed positive ⁴²K ion collection on the surface by E-field.

Simplified decay scheme of ⁴²Ar.

- Exo-200 reported that, in LXe (76.4 \pm 5.7)% of ²¹⁴Bi ions from ²¹⁴Pb β -decay are positive.
- I would suggest that we use ~80% for ⁴²K as positive ions in LAr from ⁴²Ar β -decay
- 80% on CPA, 20% (neutral) uniform in LAr.

Simulation of Radon in LAr

- Start with ²²²Rn Chain in LAr. This is a very preliminary study.
- Full BG simulation is coming soon.
- Larsoft and dunetpc version: larsoft_v09_10_02_e19_prof dunetpc develop branch (v09_10_02)
- Generator: RadioGen vs DECAY0

α Energy of ²²²Rn Chain

α energy generated by decay0 generator is
5.48948 MeV (99.922%) and 4.986 MeV (0.078%),
and it was 5.5903 MeV from in RadioGen module
used for MCC11.

Distribution of Hits – RadioGen

Rn: 5.584E-6 Bq/cc (1.4E-6Bq/cc * 4 alphas 0.1 mBq/kgSimulated 1000 events 0 hit 16.3% 1 hit 27.3% 2 hits 27.4% 3 hits 17.3% 4 hits 7.5% 5 hits 3.1% 6 hits 0.6% 7 hits 0.4% 8 hits 0.3%

Distribution of Hits – Decay0

Rn: 1.4E-6 Bq/cc

Simulated 1000 events 0 hit 4.5% 1 hit 12.3% 2 hits 21.1% 3 hits 23.5% 4 hits 16.8% 5 hits 13.3% 6 hits 5.1% 7 hits 2.2% 8 hits 1.0% 9 hits 0.2% 10 hits 0% 11 hits 0.1%

Distribution of Hits – ²²²Rn

distribution of hit

Distribution of Hits – ²¹⁴**Po**

distribution of hit

Distribution of Hits – Beta@2.18 MeV

distribution of hit

Fang Xie 10 Feb 2021 BGTF Meeting

Hits & Summed ADC – MCC11

distribution of hits and SADC

Hits & Summed ADC – Decay0

Hits & Summed ADC – ²²²Rn

Hits & Summed ADC – ²¹⁴Po

Hits & Summed ADC – Beta@2.18 MeV

Looking forward

- Radon only -> full BG simulation
- Compare the difference of alpha and beta particles in terms of detector performance.
- Replace the generator for individual isotopes with full decay chains. Solve the particle track problem.
- Determine an approximate upper limit that the SN trigger can tolerate for each of the BGs.

