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Simulations in science and engineering

Weather prediction Aerodynamics 
for Rocket 

1. PDEs (on a fixed grid or mesh)

Oil production
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Simulations in science and engineering

2.   Particle-in-Cell (involves both grid and particles)

Fusion
Laser-plasma 

particle acceleration
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Cosmic-ray 
acceleration



Simulations in science and engineering

3.   Particle-particle (graph-based):

Galaxy formationWater simulation
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Simulations in science and engineering

Characteristics:
● Large scale in size: at the forefront of HPC

○ Nevertheless, even those large compute with long-time simulation may only do reasonably 
small systems in practice

○ E.g. for a reasonable 3D laser-plasma interaction system, it has 100B grid vertices, 1T 
particles, over 100k time steps

○ Largest simulations (1/year): 10-1 of that scale, most studies: < 10-2 of that scale
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Simulations in science and engineering

Characteristics:
● Multi-scale and large dynamic range

○ The dynamics involves multiple scales, and cannot be simulated faithfully only considering 
the largest scale

○ Kinetic, many-body processes operating at microscopic scales significantly influence the 
fluid dynamics at large scales (and vice-versa)

E.g. Only ~0.01% of the 
particles are accelerated 
but can carry 10-50% of 
system energy
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Opportunity for optimization!



Goal:

For large-scale PDE systems, can we design accurate and generalizable ML 
models that capture the essential dynamics of the system with significant speed 
ups?
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Strategy: Latent evolution of PDEs (LE-PDE)

Compress the input into some suitable latent space, and evolve the dynamics 
fully in the latent space.

zt zt+1 zt+2 zt+nzt+n-1
…...

If the dimension of the latent representation << dimension of input, we can speed up the 
evolution

q

g

KK K K

g
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Strategy: Latent evolution of PDEs (LE-PDE)

Compress the input into some suitable latent space, and evolve the dynamics 
fully in the latent space.
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● How to compress the input into 
latent representation?

● How to let the ML model learn the 
dynamics faithfully?

Architecture Objective function
E.g. 

○ GNN
○ CNN
○ LSTM

E.g. 
○ Main objective
○ Regularization
○ Auxiliary objective

Based on characteristics of the input,
prior knowledge

Difficulty: during rollout, small error in the learned 
evolution model will accumulate



Objective of LE-PDE

(1)

(2)
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Objective of LE-PDE

(3) Latent consistency:

Comments:
● Encourages that the evolved latent representation by K applying 

multiple times is consistent with the encoding of future target.
● The denominator ensures that the network q cannot “cheat” by 

simply multiplying with a small scaler.
● If latent dimension << input dimension, this loss component is much 

more efficient than computing loss in input space.
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Objective of LE-PDE

(4)
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Spectral normalization:

Among infinite choice of q, g, K, which one is better?

During inference time, we want to do                            , the error in K will accumulate with 
increasing T, we want K to be generalizable.



Objective of LE-PDE

(4)
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Spectral normalization:

Intuition: we want network K to be smooth and not crazy wiggled (otherwise needs much more 
data to learn)

Quantitative: We want the Lipschitz constant             of function K to be small



Objective of LE-PDE

(4)
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Spectral normalization:

[1] Yoshida, Yuichi, and Takeru Miyato. arXiv:1705.10941 (2017).
[2] Miyato, Takeru, et al. "Spectral normalization for generative adversarial 
networks." arXiv preprint arXiv:1802.05957 (2018).
[3] Sanyal, Amartya, Philip HS Torr, and Puneet K. Dokania. arXiv:1906.04659 
(2019).

: Spectral norm of matrix A (= largest singular value of A)

derivation from [2]



Objective of LE-PDE

(4)
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Spectral normalization:

[1] Yoshida, Yuichi, and Takeru Miyato. arXiv:1705.10941 (2017).
[2] Miyato, Takeru, et al. "Spectral normalization for generative adversarial 
networks." arXiv preprint arXiv:1802.05957 (2018).
[3] Sanyal, Amartya, Philip HS Torr, and Puneet K. Dokania. arXiv:1906.04659 
(2019).

[1][2][3] also shows that regularizing the spectral norm improves 
generalization in deep neural networks and GANs.



Goal:

For large-scale PDE systems, can we design accurate and generalizable ML 
models that capture the essential dynamics of the system with significant speed 
ups?

Navier-Stokes equation
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Plasma 2-stream Vlasov equation
Plasma full Vlasov equation, 
simulated by Particle-in-Cell
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u_x component:

System 1: Incompressible Navier-Stokes in 2D:

unsteady wake-flow through a cylinder

cylinder

step 50step 40step 30step 20step 10step 0

Generated using PhiFlow 

https://github.com/tum-pbs/PhiFlow


System 1: Incompressible Navier-Stokes in 2D:
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u_y component:

dynamic time scale

step 50step 40step 30step 20step 10step 0



System 1: Incompressible Navier-Stokes in 2D:
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Encoder: CNN + MLP
Evolution model: MLP
Decoder: MLP + CNN

Architecture:

Input dimension: 256 x 128
Latent dimension: 16
2048-fold dimension reduction



System 1: Incompressible Navier-Stokes in 2D:
Failed case #1:

use diffstep 50step 40step 30step 20step 10step 0



System 1: Incompressible Navier-Stokes in 2D:
Failed case #1:

MSE vs. rollout steps:



System 1: Incompressible Navier-Stokes in 2D:
Failed case #2:

Dec29, elu, diff
step 50step 40step 30step 20step 10step 0



System 1: Incompressible Navier-Stokes in 2D:
Failed case #2:

MSE vs. rollout steps:
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System 1: Incompressible Navier-Stokes in 2D

Ground-truth:

Model rollout:

A. Full objective: 



25

System 1: Incompressible Navier-Stokes in 2D

difference:

A. Full objective: 
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System 1: Incompressible Navier-Stokes in 2D

Autocorrelation:

A. Full objective: 
MSE vs. rollout 
steps: 18 dynamical time 

scale
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System 1: Incompressible Navier-Stokes in 2D

Ground-truth:

Model rollout:

B. Without latent evolution:
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System 1: Incompressible Navier-Stokes in 2D

difference:

B. Without latent evolution:
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System 1: Incompressible Navier-Stokes in 2D

Autocorrelation:

MSE vs. rollout 
steps:

B. Without latent evolution:
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System 1: Incompressible Navier-Stokes in 2D

Ground-truth:

Model rollout:

C.                 without normalization:
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System 1: Incompressible Navier-Stokes in 2D

difference:

C.                 without normalization:
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System 1: Incompressible Navier-Stokes in 2D

Autocorrelation:

MSE vs. rollout 
steps:

C.                 without normalization:
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System 1: Incompressible Navier-Stokes in 2D

Ground-truth:

Model rollout:

D. Without            (with           ) :
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System 1: Incompressible Navier-Stokes in 2D

difference:

D. Without            (with           ) :
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System 1: Incompressible Navier-Stokes in 2D

Autocorrelation:

MSE vs. rollout 
steps:

D. Without            (with           ) :
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System 1: Incompressible Navier-Stokes in 2D

Ground-truth:

Model rollout:

E. Without            (with            ) :
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System 1: Incompressible Navier-Stokes in 2D

difference:

E. Without            (with            ) :



38

System 1: Incompressible Navier-Stokes in 2D

Autocorrelation:

MSE vs. rollout 
steps:

E. Without            (with            ) :



System 1: Incompressible Navier-Stokes in 2D

Other knowledge learned:
1. Predicting change in the target (instead of target itself) can have smaller loss in 

the short term, but may diverge faster in the long term
2. Cosine annealing of learning rate [1] works better than reducing learning rate on 

plateau
3. 1-step Validation loss is not necessarily correlated to the long-term rollout 

performance. However, a very low 1-step validation loss is a good sign

[1] Loshchilov, Ilya, and Frank Hutter. "Sgdr: Stochastic gradient 
descent with warm restarts." arXiv preprint arXiv:1608.03983 
(2016).



How to encourage obeying physical laws?

● Architecture: design architecture that automatically obeying such laws
○ e.g. Hamiltonian neural networks [1]

● Objective: 
○ Use known physical constraint/laws as a regularization

40

[1] Greydanus, Sam, Misko Dzamba, and Jason 
Yosinski. "Hamiltonian neural networks." arXiv 
preprint arXiv:1906.01563 (2019).

Can we encourage obeying physical laws in latent space, without knowing 
specific form of such laws?



How to encourage obeying physical laws?
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C: unknown conserved quantity

D: discriminator

Training:
positive pairs:  
negative pairs: (not strictly obeying)

We use the Siamese architecture:
similar to [1].

[1] Ha, Seungwoong, and Hawoong Jeong. 
"Discovering conservation laws from 
trajectories via machine learning." arXiv 
preprint arXiv:2102.04008 (2021).



How to encourage obeying physical laws?
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C: unknown conserved quantity

D: discriminator

Inference: the discriminator can help correct the trajectory if z_t evolves 
out of the conserved surface. 



Goal:

For large-scale PDE systems, can we design accurate and generalizable ML 
models that capture the essential dynamics of the system with significant speed 
ups?

Navier-Stokes equation
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Plasma 2-stream Vlasov equation
Plasma full Vlasov equation, 
simulated by Particle-in-Cell



System 2: Plasma 2-stream Vlasov equation
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u u

curve: E field
density: electron density
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System 2: Plasma 2-stream Vlasov equation

curve: E field
density: electron density



System 3: Laser-plasma acceleration
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System 3: Laser-plasma acceleration



System 3: Laser-plasma acceleration



System 3: Laser-plasma acceleration



System 3: Plasma full Vlasov equation: laser-plasma acceleration
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Standard numerical method: Particle-In-Cell (PIC)
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New challenges:

● Transients, not periodic
● Multi-scale, has fine-grained structure
● Kinetic; simulation is noisy
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Ongoing

Encoder: CNN + MLP on u direction
Evolution: CNN
Decoder: MLP + CNN on u direction

u dimension: 256
latent dimension: 32

Ground-truth: Reconstruction:

For Plasma 2-stream Vlasov equation: compress velocity distribution
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Learning a compressed velocity representation has close connection with 
moment closure problem.

In [1], the authors addresses the moment closure problem using neural networks, by 
requiring the equation of the last moment to be closed.

[1] Han, Jiequn, et al. "Uniformly accurate 
machine learning-based hydrodynamic models for 
kinetic equations." Proceedings of the National 
Academy of Sciences 116.44 (2019): 
21983-21991.

Ongoing
For Plasma 2-stream Vlasov equation: compress velocity distribution
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Ongoing

Encoder: GNN + pooling
Evolution: GNN
Decoder: GNN + unpooling

For laser-plasma acceleration:



Summary: Latent evolution of PDEs (LE-PDE)

Compress the input into some suitable latent space, and evolve the dynamics 
fully in the latent space.
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Architecture:

Objective:

● Latent evolution
● Discriminator for conservation laws
● Specific encoder/decoder for different problems

Our pipeline allows switching objective and architecture (e.g. CNN, GNN) independently, for a wide 
range of PDE and Particle-in-Cell systems including the NV equation, Vlasov equation and 
laser-plasma acceleration



Thank you!

Questions?
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