Run Control Plans

17 feb 2021 - https://indico.fnal.gov/event/47898/ - Glenn Dirkx

https://indico.fnal.gov/event/47898/

Goal

Provide a means for developers to run their applications in a run-control-like environment
- Only hard requirement for march-release
— Best effort towards engineering for reliability given time constraint
L Implemented for O(10) scale, not O(100)
L Anyincompatibilities between march-release and final release are written off as technical debt and will need to
be adapted

o First, the high overall experiment uptime goal requires DAQ to be stringently designed for
reliability, fault tolerance, and redundancy, criteria that aim to reduce overall downtime.

todo list

1.
2. Make it easy to use for expected usage scenarios
a. Local deployment (your laptop)

b. Semi-professional deployment (your own cluster of pc’s)

Set up base technical stack (so we have something to run DAQ controllers on)

DONE

-Re-implement control loops for DAQ Manager/Run Control/...
a. Steal code from last demo (but without any helper libs)
b. Bottom-up, DAQ Manager first

NOT DONE

Provide access to config.
Dictates who can change runconfig
when and why.

Tglobally

Control Interface

Tglobally

User Interface }—

Control Interface

Run Control

Is configured with run number
(optional) and st of APAs
(groups?) to manage.

1 per partition
Run Control

DAQ App Citrl

Is configured with a desired state

and config for a DAQ App. Sends

needed commands to reach that
state.

(probably) 1 per RC

DAQ App Controller

DAQ App

¥

events
DQM, Slow Control, ...

Anomaly Manager
|
Configuration Manager H

1globally

Config Mgmt

Responsible for keeping system
desired state, enforce/evolve
schemas, audit config changes

Scheduler

Receives a list of APAs.
Translates it to hostfelix_address
and manages creation and
upkeeping of DAQ Apps there

| — |

Process Mgmt

Receives a machine-local set of

(

TPC/PDS
Controller

other app

(DAQ) upposed to
be running. Manages creation and

upkeeping.

/
Resource Mgmt
1 per RC

Process Mgmt

1 for each schedulable host

L

Run Registry
1globally

Run Registry

Historical data of run configs.

Setup documentation

Initial intended usage scenarios
- Run locally
- Run on your own cluster of machines

How do we make this easy
- Ansible playbooks
— Infrastructure management absent, assumed to be bare metal
L We could opt for terraform manifests (for CERN OpenStack?) as an inbetween
— Docker-compose for local one-machine setups
L Toremind devs to think distributed, all components can actually run on just one (logical) machine

X make docker.start

Creating docker_dune-r
Creating docker_dune-

Creating docker_dune-rc
Creating docker_dune-rc-march-gp-3_1 ...
Attaching to docker_dune-rc-march-ru-1_1, docker_dune-rc-march-gp-1_1, docker_dune-rc-march-ru-2_1, docker_dune-rc-march-ru-3_1, docker_dune-rc-march-gp-3_1, docker_dune-rc-march-gp-2_1

- DUNE-RC-RC X make docker.ansible
docker-compose -f docker/docker-compose.yml run --rm ansible -i /mnt/ansible/hosts.yaml /mnt/ansible/playbook.yaml
Creating docker_ansible_run

PLAY [all] Fhkkdkhkhdkhkhhkhkhhkhhhkhhhkhhkhdhhdhhhhdhddhkhdhdhhddkhddkdhdddkddddddddddddddddddddddhdddddddddddddddddddihdddddddddhdddddddddhdddddddddhihhiid

TASK [Gathel'lng Facts] dhkhkhkhkhkhkhhhhhhdhhhkhkhkhhhhhhhhhhhhhddddddddddhdhdhdhdhdhhhhdddddddhdddhddhdhdhdhdhbhhdddddddddddhdhdhdhddhdhhhdhdddddddkdkdddhddddhhhhhhiid

Process manager & scheduler

First iteration: supervisord + custom
— Scrapped, supervisord not designed to run under a scheduler

Second iteration: nomad + consul
- Very very close as well to our requirements
L Consul: raft implementation
L Nomad: process scheduler
¥ Largely supports our various labeling (except for anti-labels, which can be lived with for now)
— Designed to work together
- Solid track record

Apart from advantages that the previous demo has, I believe this to be a solid alternative.

DAQ App Manager & config

To instruct the DAQ state machines, configs are needed for each state transition

Couple options on where responsibility lies to supply configs

— QOutside RC - configs are already present on schedulable locations
L Only works for static setups, unsuitable for future system

— Scheduler - after scheduling decision made, run some ‘setup’ job
L Eitherin-code, or (preferably) a callable service

— DAQ App manager
L Makes sense since it is the piece of code actually needing the configs to make forward progress
L Eitherin-code, or (preferably) a callable service

On control loops

Subtle aspect of run control design that makes this proposal superior to alternative technical stacks

Besides reliability arguments, there is also a large ops-related advantage, called the Operator Pattern.

runbooks

procedures

experience

Human Operator

runbooks

procedures

experience

application

Human Operator

Yvyy

controller(s)

application

Operators

Example: prometheus
- Installed using ‘kubectl apply https://..../manifest.yaml’

Overview

The Prometheus Operator provides Kubernetes native deployment and management of Prometheus and related
monitoring components. The purpose of this project is to simplify and automate the configuration of a Prometheus
based monitoring stack for Kubernetes clusters.

kubectl get prometheus
VERSION REPLICAS AGE ubectl get servicemonitor auto-devops-scrape-port- - .spec

.rometheus—OEerator—prometheus v2.18.2 1 193d

{
"endpoints”: [
{
"port":

}

alerting: . lﬁobLabel": '
alertmanagers: "namespaceSelector”: {
- apiVersion: v2 "any": true
name: prometheus-operator-alertmanager)
namespace: default "selector”: {
EsEQEragéxz 3 "m?;ﬁZEZSEéE;iogerator—scrape—port"
baseImage: quay.io/prometheus/prometheus
enableAdminAPI: false
externalUrl: https://prometheus.cmslitest.juravenator.dev

