Search for composite dark matter with optically levitated sensors

Gadi Afek
Yale University

OPTO-DM 2 Workshop, April 2021
TOWARDS MODEL-INDEPENDENT SEARCHES?

- What would a model-independent search look like?
- Search for gravitationally induced kicks from a passing dark matter particle in an array of test masses
- For DM masses > m_{Pl} might be possible but very ambitious (30dB beyond SQL...)
- We use ~10 ng microspheres with ~100 ng/Hz$^{1/2}$ acceleration sensitivity

THE SYSTEM

- Variety of materials and sizes, isolated electrically and thermally
- Low NA gravito-optical configuration → $\sim \mu m$ probing distances
- Large spheres → better acceleration sensitivity $\sim 95 \text{ ng/Hz}^{1/2} \sim 1 \text{ aN/Hz}^{1/2}$
- DM searches couple to # constituents in sensor
- Trap > 1 month → LONG integration times

Below ~1 mbar, active feedback cooling is needed for stable trapping

- Low pressure (~10^{-7} mbar), **Minimal damping** → High temperature (1K)
- **Increase damping** → Reduce temperature
- Center of mass $T = 50 \pm 22 \, \mu K$ (imaging laser noise limited)
- Noise squashing averted with out-of-loop sensor

CHARGE CONTROL

- Controlled discharging/charging with single e precision
- Measure response to oscillating E field while flashing UV light
- Charging rates ~1 e/week (~1 yA) or lower

F. Monteiro, W. Li, GA, C.L. Li, M. Mossman and D. Moore., PRA 101, 053835 (2020)
DM-INDUCED RECOILS

- Consider heavy DM particles
- Interaction mediated by a long-range force carrier $m_\phi \lesssim $ eV
- Coherent enhancement!
- Need to be cold
- Low momentum threshold ~ 200 MeV/c
- Specific models exist

$V(r) = \alpha_n N_n \frac{e^{-m_\phi r}}{r}$

$\sigma \sim N_n^2 \sim 10^{29}$
MODEL-INDEPENDENT LIMITS on NEUTRON COUPLING

$$V(r) = \alpha_n N_n \frac{e^{-m_\phi r}}{r}$$
LIMITS on COMPOSITE DM

- Assuming specific composite dark matter model, can **compare to WIMP detectors**

- For sufficiently light mediators and large composite particles, **many orders-of-magnitude more sensitive**

This work, (5ng day), 10% of DM

- This work, (5ng day), 100% of DM

- Model dependent (Eot-Wash, $g_d \sim 1$)

- Future detector for low mass WIMPs, e.g. superfluid He (1kg yr @ 1meV)

PLENTY of ROOM for IMPROVEMENT

- This first proof-of-principle already explores well beyond existing searches for certain classes of models

- **Next steps:**
 - Directionality
 - Large sensor arrays with longer exposure
 - Push to (beyond) SQL

PLENTY of ROOM for IMPROVEMENT

- This **first proof-of-principle** already explores **well beyond existing searches** for certain classes of models

- **Next steps:**
 - Directionality
 - Large sensor arrays with longer exposure
 - Push to (beyond) SQL

WHAT if DM COUPLES to N_p-N_e?

- **Particles with unity charge** under new dark force can have fractional charge under electromagnetism

- **Charge/mass ratio** $\sim 10^9$ worse than, e.g., single Sr$^{+2}$ ion or $\sim 10^{14}$ worse than a single e

- **Protons and electrons** form bound states

Theorized enhancement in relic abundance of DM mCPs, accumulating in Earth

We probe **deep into** 10^{-17} / nucleon

~ 6 orders of magnitude under natural abundance of naturally occurring stable elements (10 parts in a quintillion…)

We set a 10^{-19} e / nucleon limit on the sum $|q_p + q_e + q_n|$

Using a Bohr binding-energy argument, can link charge to mass

For an abundance > 10^{15}, explore new parameter space

Holds even in comparison with ambitious future experiment projections

Looking at relic abundance benefits from accumulation of mCPs on Earth

Postdoc positions available

You?
CURRENTLY IN THE LAB...

Search for **recoils** from composite DM

![Graph showing limit on neutron coupling vs. DM mass](image)

Testing **charge quantization** and search for **mCP**

![Graph showing fractional charge distribution](image)

Testing **Newton’s law** at ~ um distances

![Diagram showing dipole background control](image)

Controlling dipole backgrounds

Nuclear recoils from single α/β decays

![Diagram of nuclear recoils](image)

Large arrays of ng masses

![Diagram of large arrays](image)

Controlling dipole backgrounds