

Wielding the Quantum Correlations in advanced LIGO

LIGO's optical Parametric amplifier

Lee McCuller, MIT
for the SQZ team
(LIGO Laboratory, in collaboration with ANU)

Optomechanics for DM 9 Apr. 2021

How strongly can we probe the LIGO mirrors?

Observatory Network of km-scale interferometers

Gravitational Waves from the Cosmic Collider

advanced LIGO's noise sources

advanced LIGO's noise sources

Continuous Precision Measurements

This argument by *Braginsky*

Measurement 1 $\hat{x}(t)$ Measurement 2 $\hat{x}(t+\Delta t)$ Measurement 2b $\dot{x}(t) \propto \hat{p}$

$$\Delta \hat{x} \Delta \hat{p} \ge \frac{\hbar}{2}$$
 $\Delta x_{\rm sys} = \underbrace{\frac{\hbar}{2\Delta x_{\rm probe}}}_{\Delta n} \underbrace{\frac{\Delta t}{M}}_{\Delta n}$

Add system and probe uncertainty, convert to frequency domain

$$\Delta x_{\rm meas}^2(\Omega) \ge \Delta x_{\rm probe}^2(\Omega) + \Delta x_{\rm sys}^2(\Omega) \ge \frac{2\hbar}{M\Omega^2}$$

The Standard Quantum Limit on 10kg

Cartoon: Particle Picture

Amplitude → **Force** → **Displacement** → **Phase**:

LIGO Mirrors are suspended 40kg glass cylinders

photon shot noise causes momentum transfer → femto-N punches

The Measurement Process

- Caves' "Quantum-mechanical Noise in an interferometer," PRD 1981 makes the leap that the quantum state responsible for noise is from the unused port
- A more modern interpretation is that the interferometer simply applies a displacement operation to its signal state
 - The "default" signal state is vacuum

The Measurement Process

- Caves' "Quantum-mechanical Noise in an interferometer," PRD 1981 makes the leap that the quantum state responsible for noise is from the unused port
- A more modern interpretation is that the interferometer simply applies a displacement operation to its signal state
 - The "default" signal state is vacuum

Squeezing in Observing Run 3

- O3 saw *many improvements:*Power level, scatter, duty cycle, *grounding*, laser noises, angular and auxiliary control, glitch and data analysis
- The detectors have become *impressively* quantum limited: 120Mpc
- Enter Squeezing, 3db @ ~30% losses 120 → 140MPc
 - → 50% rate increase on top of everything else

Buikema, A. et al.
Sensitivity and performance of the Advanced LIGO detectors in the third observing run.
Phys. Rev. D 102, 062003 (2020).

11

Cartoon: "Wave" Picture

Amplitude → Force → Displacement → Phase:

Mechanics cause a shear action on the optical phase-space

Due to radiation pressure & mechanical susceptibility

$$\begin{bmatrix} \Delta \hat{a}_1' \\ \Delta \hat{a}_2' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\mathcal{K}(F) & 1 \end{bmatrix} \begin{bmatrix} \Delta \hat{a}_1 \\ \Delta \hat{a}_2 \end{bmatrix}$$

Shear = rotation * squeezing * rotation

Standard Quantum Limit, optics picture

$$\begin{bmatrix} \Delta \hat{a}_1' \\ \Delta \hat{a}_2' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\mathcal{K}(F) & 1 \end{bmatrix} \begin{bmatrix} \Delta \hat{a}_1 \\ \Delta \hat{a}_2 \end{bmatrix}$$

~60Hz is approximate crossover only in aLIGO full power design

Squeezing Probes Harder

$$\begin{bmatrix} \Delta \hat{a}_1' \\ \Delta \hat{a}_2' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\mathcal{K}(F) & 1 \end{bmatrix} \begin{bmatrix} \Delta \hat{a}_1 \\ \Delta \hat{a}_2 \end{bmatrix}$$

* ~60Hz is approximate crossover only in aLIGO full power design

Testing the SQL

Determine Instrument Noise

Inject Squeezing at an Angle

Haocun Yu. McCuller, L. et al. Quantum correlations between light and the kilogram-mass mirrors of LIGO. Nature 583, 43-47 (2020). $\times 10^{-20}$ 10 Total noise of interferometer with unsqueezed vacuum state Total noise of interferometer with squeezing injected at $\phi = 35^{\circ}$ Classical noise contribution to total noise of interferometer Squeezing Displacement (m/√Hz) at 35deg injected 0.9 -20 40 100 1000 Frequency (Hz)

Sub-SQL Quantum Noise in 40kg

50 Hz

100+ Hz

35 Hz

40 Hz

Dark Port Input

But I want more Squeezing and more Astrophysics

McCuller, L. et al.

Frequency-Dependent Squeezing for Advanced LIGO.
Phys. Rev. Lett. 124, 171102 (2020).

Zhao, Y. et al. Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors. Phys. Rev. Lett. 124, 171101 (2020).

MIT 16m Filter Cavity

Finesse 80,000 \rightarrow ~100Hz linewidth \rightarrow photons travel ~1000km

McCuller, L. et al. Frequency-Dependent Squeezing for Advanced LIGO. Phys. Rev. Lett. 124, 171102 (2020).

The A+ Upgrade

- 6db of frequency-dependent squeezing
 - Early install, aiming at 4.5db in Run 4
 - Sub-SQL during observations!
- 2x improved coating thermal noise
 - Still researching, but good leads
- Active wavefront control
 - Lowers squeezing loss
- Balanced homodyne readout
 - Multiple benefits
- Bigger Beamsplitter

