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Physics/detector implications

Physics at circular wrt linear
Much more interest in EWK at Z pole/WW

HF physics at Z pole comparable with LHCb upgrade/BelleII
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Physics/detector implications

Physics at circular wrt linear
Much more interest in EWK at Z pole/WW

HF physics at Z pole comparable with LHCb upgrade/BelleII

Detector at circular wrt linear
Design for lower energies - 365 GeV CoM energy maximum

Lower momentum  higher transparency

High control of acceptances to match EWK statistical error
Silicon wrapper/pre-shower

PID needed for HF

p0 for HF and t
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Detector requirements

Requirements:
Constraints from physics (similar to LC …. more or less)
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Circular vs. Linear

Low field detector solenoid  to maximize luminosity
Optimized at 2 T

Large tracking volume  calorimeter outside  very thin coil
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Circular vs. Linear

Low field detector solenoid  to maximize luminosity
Optimized at 2 T

Large tracking volume  calorimeter outside  very thin coil

Beam time structure:
Short bunch spacing (~ 20-30 ns Z, ~ 1 ms H)

No large time gap
Cooling issues for PF calorimeter and vertex detector

TPC ion backflow
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ILC
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IDEA concept
Innovative Detector for E+e- Accelerator



IDEA details
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Yoke/m chambers
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bers

Solenoid

DCH

Small magnet

Small yoke

Tracking  150 mrad
No material in front of 
luminometer

Calorimetry  100 mrad



Design guidelines:
Momentum resolution

Z or H decay muons in ZH events have rather small pt
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Design guidelines:
Momentum resolution

Z or H decay muons in ZH events have rather small pt

Transparency more relevant than asymptotic resolution
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Muon pt

ZH (Zmm)

Muon pt
90 degree

MS only

DCH endplate



Design guidelines:
Vertex detector

Transparency:
Low power (< 20 mW/cm2) to allow air cooling
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Design guidelines:
Vertex detector

Transparency:
Low power (< 20 mW/cm2) to allow air cooling

Resolution: 
5 mm shown by ALICE ITS (30 mm pixels)

Aim at ~20 mm pixels for ~ 3 mm point resolution

Snowmass EF4, March 2021 F. Bedeschi, INFN-Pisa9

C
ou

rtesy of A
L

IC
E

 J.W
. van

 H
oorn

e



Design guidelines:
Vertex detector

Transparency:
Low power (< 20 mW/cm2) to allow air cooling

Resolution: 
5 mm shown by ALICE ITS (30 mm pixels)

Aim at ~20 mm pixels for ~ 3 mm point resolution
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Design guidelines: PID
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Cluster counting in DCH for good PID resolution
Excellent K/p separation except 0.75<p<1.05 GeV (blue lines)



K/p dN/dx 

K/p dE/dx 
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Design guidelines: PID
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Cluster counting in DCH for good PID resolution
Excellent K/p separation except 0.75<p<1.05 GeV (blue lines)

Could recover with timing layer

GeV

3s

Ns K/p separation with 
TOF over 2 meters

S
ee talk of G

. Tassielli, this conference 



Design guidelines: calorimeter

Good, but not extreme EM resolution 
~ 10%/   sufficient for Higgs physics

Jet resolution ~ 30-40%/
Clearly identify W, Z, H in 2 jet decays

Transverse granularity < 1 cm for t physics

All electronics in the back to simplify cooling and services
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Design guidelines: calorimeter

Good, but not extreme EM resolution 
~ 10%/   sufficient for Higgs physics

Jet resolution ~ 30-40%/
Clearly identify W, Z, H in 2 jet decays

Transverse granularity < 1 cm for t physics

All electronics in the back to simplify cooling and services

Dual Readout calorimeter satisfies all these requirements
EM & Hadronic calorimeter in a single package
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See for instance:

- “Dual-readout calorimetry”, Sehwook Lee, Michele Livan, and Richard Wigmans

Rev. Mod. Phys. 90, 025002 – Published 26 April 2018

- L. Pezzotti, CHEF2019, Nov. 2019, Fukuoka, Japan 



Calorimeter simulation

4p detector in GEANT4 tuned to RD52 test beam data
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Tower segmentation: Δϑ = 1.125°, Δϕ = 10.0°
Number of towers in barrel: 40 x 2 x 36 = 2880 
Number of towers per endcap: 35 x 36 = 1260

Theta coverage up to 0.100 rad



Calorimeter simulation

4p detector in GEANT4 tuned to RD52 test beam data

Good EM resolution averaged over h and f
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Calorimeter simulation

4p detector in GEANT4 tuned to RD52 test beam data

Good EM resolution averaged over h and f
DR works well with jets
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IDEA Preliminary Jet clustering on: 
True jets
Cherenkov signal
Scintillation signal
DR correction
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Calorimeter simulation

4p detector in GEANT4 tuned to RD52 test beam data

Good EM resolution averaged over h and f
DR works well with jets

Adequate separation of W/Z/H
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Crystal option

~20 cm PbWO4

3%/

DR w. filters

Timing layer
Lyso 20-30 ps
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 ECAL layer:
 PbWO crystals
 front segment 5 cm (~5.4X0)
 rear segment for core shower 
 (15 cm ~16.3X0)
 10x10x200 mm³ of crystal
 5x5 mm² SiPMs (10-15 um)

1x1x5cm3

PbWO
1x1x15cm3

PbWO



See talk of P. Giubilato, this conference 

A glimpse to R&D

 Silicon systems:
 VTX: Low power, high speed  MAPS – CMOS to limit costs

Time stamping ~ 10 ns, Stitching

 Outer Si: CMOS passive strips, long pixels, evolution from R&D at HL-LHC
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A glimpse to R&D

 Silicon systems:
 VTX: Low power, high speed  MAPS – CMOS to limit costs

Time stamping ~ 10 ns, Stitching

 Outer Si: CMOS passive strips, long pixels, evolution from R&D at HL-LHC

 Drift chamber:
 Light mechanics and new wire technology (e.g. C-fiber)

 Cluster counting electronics

 Calorimeter:
 Scalable mechanical options

 SiPM readout architectures/chips – Digital SiPM

 Crystals

Muon chambers:
 mRwell industrialization 

 DLC sputtering
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Final comments

 Summary of main features:
 High precision vertex detector

 High transparency and momentum resolution
Good integrated PID with cluster counting  even better with timing layer

 Excellent calorimetry  FANTASTIC with crystals

 Light solenoid and minimal yoke

 Tracking muon system

 Excellent performance at all energies: Z, WW, ZH, tt
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Final comments

 Summary of main features:
 High precision vertex detector

 High transparency and momentum resolution
Good integrated PID with cluster counting  even better with timing layer

 Excellent calorimetry  FANTASTIC with crystals

 Light solenoid and minimal yoke

 Tracking muon system

 Excellent performance at all energies: Z, WW, ZH, tt

 Based on achievable technologies, but need R&D/SW simulation 
to finalize, optimize, reduce costs and engineer full detector

Much R&D work in progress supported by several funding sources

 Collaboration on all these R&D’s is growing internationally, but 
there is still ample space for additional contributions
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Backup

Snowmass EF4, March 2021 F. Bedeschi, INFN-Pisa16



Detector concept IDEA
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Detector concept IDEA

 Si pixel vertex detector
 5 MAPS layers

R = 1.7 – 34 cm
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Detector concept IDEA

 Si pixel vertex detector
 5 MAPS layers
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 Drift chamber (112 layers)
 4m long, r = 35 – 200 cm














Snowmass EF4, March 2021 F. Bedeschi, INFN-Pisa17

IDEA concept



Detector concept IDEA
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Detector concept IDEA
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R = 1.7 – 34 cm

 Drift chamber (112 layers)
 4m long, r = 35 – 200 cm
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 Solenoid: 2 T - 5 m, r = 2.1-2.4
 0.74 X0, 0.16 l @ 90º
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Detector concept IDEA

 Si pixel vertex detector
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Detector concept IDEA

 Si pixel vertex detector
 5 MAPS layers

R = 1.7 – 34 cm

 Drift chamber (112 layers)
 4m long, r = 35 – 200 cm

 Si wrapper: strips

 Solenoid: 2 T - 5 m, r = 2.1-2.4
 0.74 X0, 0.16 l @ 90º

 Pre-shower: mRwell

 Dual Readout calorimetry
 2m deep/8 l

Muon chambers
 mRwell
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IDEA concept



Tracking benchmarks

Fast simulation with full covariance matrix
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Higgs recoil

HZ H mm

No cuts



Tracking benchmarks

Fast simulation with full covariance matrix



Snowmass EF4, March 2021 F. Bedeschi, INFN-Pisa18

Higgs recoil

HZ H mm

H inv. mass
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Tracking benchmarks

Fast simulation with full covariance matrix

 IDEA card now in DELPHES
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Higgs recoil

HZ H mm

H inv. mass

ZHZ mm



Transparency
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Transparency
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dE/dx vs dN/dx

Steeper high energy rise of #clusters than ionization E
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Calorimeter separation (g)

Transverse granularity below 1 cm seems adequate
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Zt+t-

t+r+np+p0n

Dg cm @ 2 m



Calorimeter separation (g)

Transverse granularity below 1 cm seems adequate

Extreme granularity (~2 mm) achievable with DR
At a cost ….
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50 GeV electrons 100 GeV p0



Effect of material

Effect of 1 X0 Fe

Distance from calor.
30 cm barrel

10 cm endcap

Snowmass EF4, March 2021 F. Bedeschi, INFN-Pisa22

Z j j

NO material

s= 2.35 GeV

Z j j

1 X0 Fe

s= 2.44 GeV



Calorimeter resolution (g)

Is 20%/sqrt(E) acceptable? Can we trigger on single g?

What about radiative return analysis?
Eg. Nn, and Z ne ne
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Calorimeter resolution (g)

Is 20%/sqrt(E) acceptable? Can we trigger on single g?

What about radiative return analysis?
Eg. Nn, and Z ne ne
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Need 5-10%/sqrt(E)

for a good measurement

s(gne): 18% 1.4-2.4%

- Worse resolution make 
separation difficult


