A detector concept for circular e+ecolliders

<u>Franco Bedeschi</u>, INFN Snowmass,EF04 March 12th, 2021

OUTLINE

Circular vs. linear
The IDEA detector
Design guidelines
Ongoing R&D
Concluding comments

Luminosity comparison

Snowmass EF4, March 2021

Istituto Nazionale di Fisica Nucleare

2

Physics/detector implications

Physics at circular wrt linear

- Much more interest in EWK at Z pole/WW
- → HF physics at Z pole comparable with LHCb upgrade/BelleII

Physics/detector implications

Physics at circular wrt linear

- Much more interest in EWK at Z pole/WW
- → HF physics at Z pole comparable with LHCb upgrade/BelleII

Detector at circular wrt linear

Design for lower energies - 365 GeV CoM energy maximum

 Lower momentum → higher transparency
 High control of acceptances to match EWK statistical error
 Silicon wrapper/pre-shower

 PID needed for HF
 π⁰ for HF and τ

Requirements:

Physics process	Measurands	Detector subsystem	Performance requirement	From CDR
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \ell}$	5
$H \to b\bar{b}/c\bar{c}/gg$	${\rm BR}(H o b \bar{b} / c \bar{c} / g g)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$	
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{\rm jet}/E=$ 3 ~ 4% at 100 GeV	
$H \to \gamma \gamma$	$\mathrm{BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} = 0.01$	

Requirements:

Physics process	Measurands	Detector subsystem	Performance requirement	From CDR
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} q}$	Too tight?
$H \to b \bar{b}/c \bar{c}/g g$	${\rm BR}(H o b \bar{b}/c \bar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$	
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma^{{ m jet}}_E/E=$ $3\sim 4\%$ at 100 GeV	
$H \to \gamma \gamma$	$\mathrm{BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} \oplus 0.01$	

Requirements:

Physics process	Measurands	Detector subsystem	Performance requirement	From CDR
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} e}$	Too tight?
$H \to b\bar{b}/c\bar{c}/gg$	${\rm BR}(H \to b \bar{b} / c \bar{c} / g g)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$	Not enough?
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E =$ 3 ~ 4% at 100 GeV	
$H \to \gamma \gamma$	$\mathrm{BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} \oplus 0.01$	

Requirements:

Physics process	Measurands	Detector subsystem	Performance requirement	From CDR
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker 2	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV})\sin^{3/2}}$	• Too tight?
$H \to b \bar{b}/c \bar{c}/gg$	${\rm BR}(H \to b \bar{b} / c \bar{c} / g g)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu \text{m})$	Not enough?
$H \to q \bar{q}, WW^*, ZZ^*$	${\rm BR}(H\to q\bar{q},WW^*,ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E =$ 3 ~ 4% at 100 GeV	Too tight?
$H \to \gamma \gamma$	$\mathrm{BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} = 0.01$	

Requirements:

Physics process	Measurands	Detector subsystem	Performance requirement	From CDR
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker 2 :	$\Delta(1/p_T) = \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2}}$	Too tight?
$H \to b\bar{b}/c\bar{c}/gg$	${\rm BR}(H o b \bar{b}/c \bar{c}/gg)$	Vertex 5	$\sigma_{r\phi} = \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$	Not enough?
$H \to q\bar{q}, WW^*, ZZ^*$	$\mathrm{BR}(H\to q\bar{q},WW^*,ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E =$ 3 ~ 4% at 100 GeV	Too tight?
$H\to\gamma\gamma$	$\mathrm{BR}(H\to\gamma\gamma)$	ECAL	$\Delta E/E = \frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01$	Not enough?

Circular vs. Linear

Low field detector solenoid to maximize luminosity
 Optimized at 2 T

 \blacktriangleright Large tracking volume \rightarrow calorimeter outside \rightarrow very thin coil

Snowmass EF4, March 2021

Circular vs. Linear

 \blacktriangleright Large tracking volume \rightarrow calorimeter outside \rightarrow very thin coil

Beam time structure:

- Short bunch spacing (~ 20-30 ns Z, ~ 1 μ s H)
- No large time gap
 - Cooling issues for PF calorimeter and vertex detector
 - TPC ion backflow

Innovative Detector for E+e- Accelerator

Design guidelines: Momentum resolution

 \mathbf{A} Z or H decay muons in ZH events have rather small \mathbf{p}_{t}

Design guidelines: Momentum resolution

\mathbf{A} Z or H decay muons in ZH events have rather small \mathbf{p}_t

Transparency more relevant than asymptotic resolution

Transparency:

Low power (< 20 mW/cm²) to allow air cooling

Transparency:

Low power (< 20 mW/cm²) to allow air cooling

Resolution:

- > 5 µm shown by ALICE ITS (30 µm pixels)
- Aim at ~20 μ m pixels for ~ 3 μ m point resolution

Design guidelines: Vertex detector

Snowmass EF4, March 2021

Design guidelines: PID

Cluster counting in DCH for good PID resolution Excellent K/π separation except 0.75<p<1.05 GeV (blue lines)

Design guidelines: PID

Cluster counting in DCH for good PID resolution

- Excellent K/ π separation except 0.75<p<1.05 GeV (blue lines)
- Could recover with timing layer

Design guidelines: calorimeter

Cood, but not extreme EM resolution
~ 10%/√E sufficient for Higgs physics
Jet resolution ~ 30-40%/√E
Clearly identify W, Z, H in 2 jet decays
Transverse granularity < 1 cm for τ physics
All electronics in the back to simplify cooling and services

Design guidelines: calorimeter

Good, but not extreme EM resolution $\sim 10\%/\sqrt{E}$ sufficient for Higgs physics • Jet resolution ~ $30-40\%/\sqrt{E}$ Clearly identify W, Z, H in 2 jet decays * Transverse granularity < 1 cm for τ physics All electronics in the back to simplify cooling and services Dual Readout calorimeter satisfies all these requirements EM & Hadronic calorimeter in a single package See for instance: - "Dual-readout calorimetry", Sehwook Lee, Michele Livan, and Richard Wigmans Rev. Mod. Phys. 90, 025002 – Published 26 April 2018 - L. Pezzotti, CHEF2019, Nov. 2019, Fukuoka, Japan

4π detector in GEANT4 tuned to RD52 test beam data

Snowmass EF4, March 2021

12

* 4π detector in GEANT4 tuned to RD52 test beam data Good EM resolution averaged over η and φ

 4π detector in GEANT4 tuned to RD52 test beam data
 Good EM resolution averaged over η and φ
 DR works well with jets

* 4π detector in GEANT4 tuned to RD52 test beam data

- **\bullet** Good EM resolution averaged over η and ϕ
- DR works well with jets
- Adequate separation of W/Z/H

$$e^+e^- \rightarrow HZ \rightarrow \chi^0 \chi^0 jj$$

 $e^+e^- \rightarrow WW \rightarrow \nu_\mu \mu jj$
 $e^+e^- \rightarrow HZ \rightarrow bb\nu\nu$

Snowmass EF4, March 2021

Crystal option

 $1 \times 1 \times 5 \text{ cm}^3$

PbWO

◆ ~20 cm PbWO₄
◆ $3\%/\sqrt{E}$ ◆ DR w. filters
◆ Timing layer
> Lyso 20-30 ps

• ECAL layer:

- PbWO crystals
- front segment 5 cm ($\sim 5.4X_0$)
- rear segment for core shower
- $(15 \text{ cm} \sim 16.3 \text{X}_0)$
- 10x10x200 mm³ of crystal
- 5x5 mm² SiPMs (10-15 um)

 $\frac{1 \times 1 \times 15 \text{ cm}^3}{\text{PbWO}}$

- ▶ VTX: Low power, high speed MAPS CMOS to limit costs
 - Time stamping ~ 10 ns, Stitching
- Outer Si: CMOS passive strips, long pixels, evolution from R&D at HL-LHC

See talk of P. Giubilato, this conference

Requirements	ARCADIA
Pixel pitch (um)	20 - 25
Thickness (um)	50 - 100
Scalability (cm)	Up to \sim 4 x 4
Hit rate (MHz/cm ²)	10 ightarrow 100
Cluster size (pixels)	2-4
Timing res. (ns)	10
Power (mW/cm ²)	< 20
Rad. Hard (Mrad)	1
Tiling	Side-buttable
Trigger	Triggerless

First Implementation

- Target hit rate: 100MHz/cm²
- Target efficiency: 99.9% (in every regard)
- ▶ Pixel size: 20µm × 20 µm
- Double column arrangement
- Support for 2048 pixels in column (4cm)

Silicon systems:

- VTX: Low power, high speed MAPS CMOS to limit costs
 - Time stamping ~ 10 ns, Stitching
- Outer Si: CMOS passive strips, long pixels, evolution from R&D at HL-LHC

Drift chamber:

- Light mechanics and new wire technology (e.g. C-fiber)
- Cluster counting electronics

Calorimeter:

Scalable mechanical options

Calorimeter:

- Scalable mechanical options
- SiPM readout architectures/chips Digital SiPM

Silicon avetema

Cluster counting electronics

Calorimeter:

- Scalable mechanical options
- SiPM readout architectures/chips Digital SiPM
- Crystals

Calorimet

- Scalable
- Pre-preg Read-out

HL-LHC

lstituto Nazionale di Fisica Nucleare

- SiPM readout architectures/chips Digital SiPM
- Crystals

Muon chambers:

- µRwell industrialization
- DLC sputtering

Summary of main features:

- High precision vertex detector
- High transparency and momentum resolution
 - Good integrated PID with cluster counting \rightarrow even better with timing layer
- \blacktriangleright Excellent calorimetry \rightarrow FANTASTIC with crystals
- Light solenoid and minimal yoke
- Tracking muon system
- Excellent performance at all energies: Z, WW, ZH, tt

Summary of main features:

- High precision vertex detector
- High transparency and momentum resolution
 - Good integrated PID with cluster counting \rightarrow even better with timing layer
- \blacktriangleright Excellent calorimetry \rightarrow FANTASTIC with crystals
- Light solenoid and minimal yoke
- Tracking muon system
- Excellent performance at all energies: Z, WW, ZH, tt

Based on achievable technologies, but need R&D/SW simulation to finalize, optimize, reduce costs and engineer full detector

Summary of main features:

- High precision vertex detector
- High transparency and momentum resolution
 - Good integrated PID with cluster counting \rightarrow even better with timing layer
- \blacktriangleright Excellent calorimetry \rightarrow FANTASTIC with crystals
- Light solenoid and minimal yoke
- Tracking muon system
- Excellent performance at all energies: Z, WW, ZH, tt
- Based on achievable technologies, but need R&D/SW simulation to finalize, optimize, reduce costs and engineer full detector
- Much R&D work in progress supported by several funding sources

Summary of main features:

- High precision vertex detector
- High transparency and momentum resolution
 - Good integrated PID with cluster counting \rightarrow even better with timing layer
- \blacktriangleright Excellent calorimetry \rightarrow FANTASTIC with crystals
- Light solenoid and minimal yoke
- Tracking muon system
- Excellent performance at all energies: Z, WW, ZH, tt
- Based on achievable technologies, but need R&D/SW simulation to finalize, optimize, reduce costs and engineer full detector
- Much R&D work in progress supported by several funding sources
- Collaboration on all these R&D's is growing internationally, but there is still ample space for additional contributions

IDEA concept

Detector concept IDEA Si pixel vertex detector 5 MAPS layers R = 1.7 - 34 cm Manong, r = 35 - 200 cm

Snowmass EF4, March 2021

Si pixel vertex detector

- 5 MAPS layers
 - R = 1.7 34 cm
- Drift chamber (112 layers)
 - $4m \log, r = 35 200 cm$
- Si wrapper: strips

Si pixel vertex detector

- 5 MAPS layers
 - R = 1.7 34 cm

Drift chamber (112 layers)

- 4m long, r = 35 200 cm
- Si wrapper: strips

Solenoid: 2 T - 5 m, r = 2.1-2.4 ≥ 0.74 X₀, 0.16 λ @ 90°

Si pixel vertex detector

5 MAPS layers

R = 1.7 - 34 cm

Drift chamber (112 layers)

→ 4m long, r = 35 - 200 cm

Si wrapper: strips

◆ Solenoid: 2 T - 5 m, r = 2.1-2.4

 $\sim 0.74 \text{ X}_0, 0.16 \lambda @ 90^{\circ}$

Pre-shower: μRwell

Si pixel vertex detector

5 MAPS layers

R = 1.7 - 34 cm

Drift chamber (112 layers)

 \sim 4m long, r = 35 – 200 cm

Si wrapper: strips

◆ Solenoid: 2 T - 5 m, r = 2.1-2.4

0.74 X₀, 0.16 λ @ 90°

Pre-shower: μRwell

Dual Readout calorimetry
 2m deep/8 λ

Si pixel vertex detector

5 MAPS layers

R = 1.7 - 34 cm

Drift chamber (112 layers)

• $4m \log, r = 35 - 200 cm$

Si wrapper: strips

◆ Solenoid: 2 T - 5 m, r = 2.1-2.4

0.74 X₀, 0.16 λ @ 90°

Pre-shower: µRwell

Dual Readout calorimetry

 $\sim 2m \text{ deep}/8 \lambda$

Muon chambers

▶ µRwell

Snowmass EF4, March 2021

Tracking benchmarks

Tracking benchmarks

Tracking benchmarks

IDEA card now in DELPHES

Transparency

CLD: Material vs. $cos(\theta)$

Snowmass EF4, March 2021

19

dE/dx vs dN/dx

Steeper high energy rise of #clusters than ionization E

Calorimeter separation (γ)

Transverse granularity below 1 cm seems adequate

Snowmass EF4, March 2021

Calorimeter separation (γ)

Transverse granularity below 1 cm seems adequate
 Extreme granularity (~2 mm) achievable with DR
 At a cost

Snowmass EF4, March 2021

Effect of material

Effect of 1 X0 Fe
Distance from calor.
30 cm barrel
10 cm endcap

Calorimeter resolution (γ)

Is 20%/sqrt(E) acceptable? Can we trigger on single γ?
What about radiative return analysis?

Eg. Nv, and $Z \rightarrow v_e v_e$

Calorimeter resolution (γ)

Is 20%/sqrt(E) acceptable? Can we trigger on single γ?
What about radiative return analysis?

Eg. Nv, and $Z \rightarrow v_e v_e$

d σ /dv [nb], e⁺e⁻ -> $v\overline{v}$ +N γ , γ 's taged

Need 5-10%/sqrt(E) for a good measurement $\sigma(g_{ve}): 18\% \rightarrow 1.4-2.4\%$ - Worse resolution make separation difficult