The µ-RWELL technology: overview

G. Bencivenni¹, G. Cibinetto², G. Felici¹, P. Giacomelli³, G. Morello¹, M. Poli Lener¹

- 1. Laboratori Nazionali di Frascati dell'INFN
- 2. INFN Ferrara
- 3. INFN Bologna

The µ-RWELL in a nutshell

The micro-Resistive WELL (μ -RWELL) belongs to the **Micro-Pattern Gaseous Detectors** class.

It merges the amplification stage from GEM technology with the resisitive stage (Diamond-Like Carbon) from Micro-Megas.

The result is a detector with a **single amplification stage** and an **intrinsic spark protection**

As the charge, produced in the avalanche, spreads out flowing through the resistive layer towards the ground with a given time constant, the rate capability of the detector requires dedicated studies.

From these tests different charge evacuation schemes have been implemented.

Low rate version

Single Resistive Layer (SRL)

- 2-D current evacuation scheme based on a single resistive layer
- grounding all around the active area
- limitation for large area: the path of the current towards ground connection depends on the particle incidence point detector response inhomogeneity, limited rate capability – O(10 kHz/cm²)

High rate versions

Main purpose of these versions is to reduce the distance to be travelled by the charge towards the ground.

Double-resistive layer (DRL)

- 3D charge evacuation scheme
- Two conductive vias matrices (density ~1/cm²)
- Grounding through the FEE
- Difficult to be implemented in industrial production

Silver Grid (SG)

- **2D** charge evacuation scheme
- One resistive layer only
- Grounding through copper lines (screenprinting or photo-litography, pitch ~1/cm)
- Dead zone above the grounding lines
- **Much easier** to be implemented in industrial production

The µ-RWELL in a nutshell

Low rate version with lateral system to measure the surface resistivity

Most recent version of the Silver Grid (pitch 12 mm, \sim 0.47")

Measurements: hall of fame

Snowmass meeting, April 23rd 2021

Low-rate applications: IDEA apparatus @ FCC-ee/CepC

Test beam planned in October at H8-CERN North Area for cluster size vs resistivity studies with scaled prototypes

520 MM 20.87.

Expected rate: 10 kHz/cm²

Low-rate applications: IDEA apparatus @ FCC-ee/CepC

Endcap

Tiles: 50x50 cm² with X-Y readout Strip Length: 50 cm Strip pitch: 0.4 mm

Muon

Layer	R [mm]	Length [mm]	Thickness [mm]	int. Iength	pixel size [mm]	area [cm ²]	# of channels
µRwell	4520	±4500	20		1.5×500	2.6M	341K
iron	4560	±4500	300	1.5			
µRwell	4880	±4500	20		1.5×500	2.8M	368K
iron	4920	±4500	300	1.5			
µRwell	5240	±5260	20		1.5×500	3.5M	462K

Disk	R _{in} [mm]	R _{out} [mm]	z [mm]	Thickness [mm]	int. Iength	pixel size [mm]	area [cm²]	# of channels
µRwell	454	5220	±4520	20		1.5×500	1.7M	227K
iron	454	5220	±4560	300	1.5			
µRwell	454	5220	±4880	20		1.5×500	1.7M	227K
iron	454	5220	±4920	300	2.0			
µRwell	454	5220	±5240	20		1.5×500	1.7M	227K

Tiles: 50x50 cm² with X-Y readout Strip Length: 50 cm Strip pitch: 1.5 mm

Snowmass meeting, April 23rd 2021

Low-rate applications: apparatus for SCT (BINP, RUS), CREMLIN PLUS joint RUS-ITA project

Expected rate: 50 kHz/cm²

Competition ongoing between two technologies: TPC and μ-RWELL

The core of the project is to exploit the flexibility of the substrate (®kapton) to produce roof tiles.

The detector will be composed of two or four coaxial cylindrical μ -RWELL. Each μ -RWELL will be composed of three removable roof tiles, in order to substitute one in case of problems

Snowmass meeting, April 23rd 2021

Low-rate applications: apparatus for SCT (BINP, RUS), CREMLIN PLUS joint RUS-ITA project

Two ideas on the table:

- N.1 large gap back-to-back layers
 0.86 0.96% X₀
- 2 x 1 cm thick gas gap/B2B device
- 10 cm global sampling gas, readout in μ-TPC mode

- N.2 small gap back-to-back layers
 1.72 1.92% X₀
- 2 x 1 cm gas gap/B2B device
- 4 cm global sampling gas, readout in μ-TPC mode

Low-rate applications: neutron detection, ATTRACT-URANIA EU project

- Beyond high energy physics, particle detectors find room for social life application (ex. homeland security).
- In particular neutron detection is:
- Basic to fight against radioactive material smuggling
- Strictly necessary for radioactive waste monitoring
- Complementary to X-ray materials radiography

These activities needs detectors *simple* to be scaled up to large areas (low rate, $\sim 1m^2$), *flexible* to be adapted to different geometries (cylindrical) and using a *converter* not interfering with the readout (es. ${}^{10}B_4C$ converter, strip- or pad-segmented readout)

 $\begin{array}{ll} n + {}^{10}B \rightarrow {}^{7}\text{Li}^{*}(0.84 \text{ MeV}) + \alpha(1.47 \text{ MeV}) + \gamma(0.48 \text{ MeV}) & 93\%, \text{ Q}{=}2.3 \text{ MeV} \\ n + {}^{10}B \rightarrow {}^{7}\text{Li}(1.16 \text{ MeV}) + \alpha(1.78 \text{ MeV}) & 7\%, \text{ Q}{=}2.79 \text{ MeV} \end{array}$

at least one slow charged particle is released inside the gas with a huge amount of primary ionization electrons.

Low-rate applications: neutron detection, ATTRACT-URANIA EU project

GEANT4 simulations indicate a conversion efficiency of ~2% for planar cathodes. The neutron conversion efficiency DOES NOT depend on the amplification stage; it can be improved introducing different geometries of the cathode

Test at HOTNESS-ENEA Frascati (RM) planned in May at 241Am-Be source (750 Hz/cm² neutron flux estimated)

Simulations with GEANT4 suggested a neutron conversion efficiency up to 5.6% (emission of α or Li in the detector active volume)

High-rate applications: LHCb @ HL-LHC

The muon stations of LHCb are subject to very different rates. For their upgrade we plan to involve both layouts.

Max particle flux (single GAP) for U2 (@ L= $2x10^{34}$ cm⁻²s⁻¹) is obtained by scaling x10 the particle flux during phase-1, and considering the attenuation factor due to the Iron shielding in front of M1

(*) average rates are approximately 1/2 max values

HR RWELL - 600 detectors

Technology transfer

We established through the years a strong collaboration with **ELTOS SpA**, a company producing PCB

Several small size prototypes realized by this company.

For the phase-2 upgrade of the CMS muon stations we proposed the u-RWELL technology.

The R&D lead us to the construction of 0.5x0.5 m^2 flat tiles to be spliced together to cover ${\sim}2\ m^2$ area

Nowadays the collaboration looks at the construction of the PCB for IDEA and LHCb

Conclusions

- The u-RWELL technology is quite promising for many applications in high energy physics and beyond
- The simplicity and modularity of the detector makes it suitable to cover large areas
- The flexibility of the substrate of the amplification stage can be exploited to build cylindrical detectors
- No matter how the readout is segmented, the detector becomes sensitive to neutrons with a properly sputtered cathode
- The technology is considered in many in different projects
- The collaboration with industry is well established: soon they will produce medium size detectors (0.5 x 0.5 m²)

PRESENT PLANS

Development of further high rate versions with an easier manufacturing technique

