<u>Muon Collider</u> <u>Snowmass</u>

B.K.Abbott, A.Apyan, B.Azartash Namin, V.Balakrishnan, J.BerryHill, S.R.Jindariani, M.P.Kawale, J.D.Nichols, M.G.Strauss, J.Stupak, M.J Swiatlowski, H.Weber

Motivation

- Muon beam consists of large vector boson component and hence with muon collider we could probe the vector boson scattering.
- The Dimension-8 operators corresponds to quartic coupling.
- We are focussing on the vertices allowed by the Standard Model and we are looking at T1 parameter now since it is sensitive to every coupling. [Table below]
- Using muon collider, with higher luminosity and energy, we are looking at how well we can probe these coupling.
- Currently we are focusing on 3, 6 and 10 TeV center of mass energies and later study up to 30 TeV.

		WWWW	WWZZ	$WW\gamma Z$	$WW\gamma\gamma$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma$
S: Pure Higgs field, pure longitudinal M: Mixed Higgs-field-strength, mixed long-transverse T: Pure field-strength tensor, pure	$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	✓	✓			✓				
	$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\!\mathcal{O}_{M,6},\!\mathcal{O}_{M,7}$	✓	~	~	✓	✓	~	~		
	$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		✓	✓	~	✓	~	1		
	$\mathcal{O}_{T,0}$, $\mathcal{O}_{T,1}$, $\mathcal{O}_{T,2}$	✓	~	✓	✓	✓	1	~	~	1
transverse	$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		✓	✓	✓	✓	1	✓	~	1
	$\mathcal{O}_{T,8}$, $\mathcal{O}_{T,9}$					1	1	✓	~	✓

Allowed by SM

The Dimension-8 operators

Potential Final States

- Example: probe WWZy aQGC in WWµµ final state
- Contribution from both S-channel and VBS
- Not possible to distinguish these 100%
- But we could look at the number of forward muons in each case.

- Example: probe WWZ γ aQGC in WW+Z/µµ final states.
- Ideally, we would have:
 - A SM sample with all SM $\mu\mu \rightarrow WW+Z/\mu\mu$ processes.
- For interpretation:
 - A set of unphysical "signal" (BSM SM \approx signal) samples for $\mu\mu \rightarrow WW+Z/\mu\mu$ which only include interference+quadratic terms (with various Λ_{NP}).
- For optimization:
 - A set of BSM samples for $\mu\mu \rightarrow WW+Z/\mu\mu$ which include SM+interference+quadratic terms (with various Λ_{NP}).
- All of the above should have sufficient stats in s-channel and VBS, to permit studies in both topologies.
 - But cross sections have non-trivial s^{1/2} dependence, mixed sample may not adequately populate both topologies.
 - For S-channel : σ decreases with $s^{1/2}$, E(vertex) = $s^{1/2}$
 - For VBS : σ increases with $s^{1/2}$, E(vertex) < $s^{1/2}$
- We have produced these samples using madgraph.

All OSSF lepton pairs, reconstructed from leptons with pT>5 GeV and |eta|<2

<u>WWWW Vertex : Cross-section results for T1 parameter</u>

- Number of events = 5000
- Total = SM, INT & QUAD cross-section calculated separately and added.
- Full = Includes SM, INT & QUAD cross-section.

Future Plans

- Finalize the center of mass of energy to generate the samples: 3, 6, 10 or 30 TeV?
- Leptonic vs hadronic decay modes.
- VBS vs S-channel
- How the muonic acceptance effect our ability to tag VBS events?
- Cross checking the results from WHIZARD

Backup

Solid = VBF , Dashed = S-channel

WWZy Vertex

- Z mass distribution for 10k events: s-channel (WWZ(->µµ)) and VBF (WWµµ) generated at 10 TeV
- Full signal -> (SM + Int + Quad).
- VBF:

generate mu+ mu- > mu+ mu- W+ W- QED=2 QCD=0 T0=0 M0=0 M1=0 M2=0 M3=0 M4=0 M5=0 M6=0 M7=0 T1=1 T2=0 T5=0 T6=0 T7=0 \$ z a h

• S-channel:

generate mu+ mu- > Z > mu+ mu- W+ W- QED=2 T0=0 M0=0 M1=0 M2=0 M3=0 M4=0 M5=0 M6=0 M7=0 T1=1 T2=0 T5=0 T6=0 T7=0

- add process generate mu+ mu- > a > mu+ mu- W+ W- QED=2 T0=0 M0=0 M1=0 M2=0 M3=0 M4=0 M5=0 M6=0 M7=0 T1=1 T2=0 T5=0 T6=0 T7=0 \$ z
- \$ gauge invariant
 \$ z a h forbids z, a, h in s-channel

WWWW Vertex

- Generated samples for the WWWW vertex using the following commands for 3, 6 and 10 TeV using MadGraph.
- 1) SM: Did not load the aQGC model.

generate mu+ mu- > w+ w- vm~ vm

• 2) INT+QUAD:

```
generate mu+ mu- > w+ w- vm ~ vm QED=2 QCD=0 T1^2=1 S0=0 S1=0 M0=0 M1=0 M6=0 M7=0 T0=0 T2=0
```

add process mu+ mu- > w+ w- vm
 vm QED=2 QCD=0 T1^2=2 S0=0 S1=0 M0=0 M1=0 M6=0 M7=0 T0=0 T2=0

• 3) FULL :

generate mu+ mu- > w+ w- vm ~ vm T1=1 S0=0 S1=0 M0=0 M1=0 M6=0 M7=0 T0=0 T2=0

• The parameters used in the commands above are those corresponding to the WWWW vertex.

Feynman Diagrams

6

WWWW

WWZZ

WWZγ

