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Rising citations in the past year in the fields of neutrino cross section measurement,
reactor neutrino flux unfolding, and collider physics.
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Data unfolding

Solve an inverse problem (from result to cause)
» Unfolding, deconvolution, unsmearing, etc.
» Discretized in general given the measurement in binned distribution (e.g. histograms)

In HEP community, to estimate the true signal based on a measurement with
» Detector response
« Statistical fluctuation
« Systematic (backgrounds, mis-modeling of detector response, imperfect calibration, etc.)

Necessity
» Close to the true signal without specific detector response
« Comparison with theoretical predictions, e.g. cross section
« Comparison between different experiments
« Sometimes certain features may not be recognizable (intuitive) in the folded distribution

Not necessary in many problems, e.g. hypothesis testing or parameter fit



* In general, the number of dimensions/bins in a measurement is more than that in true
spectrum to be unfolded. The data unfolding problem is essentially a fitting problem.

x2S =(m-—-r-s)fCovi(m—r-5s)

" m: measured spectrum, m-dimensional vector; central value background
subtracted and its uncertainty propagated to total covariance

= s :unknown spectrum, to be unfolded, n-dimensional vector

" 7 :smearing (response) matrix, mXnandm=>=n

Cov : total covariance matrix containing all statistical and systematic uncertainties

1

= QT0, Q is a lower triangular matrix
x°()=M—-R-s5)"-(M—R-5s)

* Cholesky decomposition: Cov™

Pre-scaling Solution (direct inversion)

" M:=0Q -m §=(RTR)"R™M The response matrix R is

= R=Q-r M = R - Sgpye + N(noise) unnecessary to be a square
Noise = total stat. +total sys. matrix
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Data unfolding
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This is one unbiased solution (direct inversion, no
regularization) to an unfolding problem. “True”
information is buried in the catastrophic oscillations
in the unfolded spectrum.

Practical solution: trade-off between bias and variance

to suppress the “oscillation” --> regularization [defines
; various unfolding methods]



Regularization

 Regularization is not needed if
* Bin-to-bin smearing is small
« = Response matrix is well-conditioned
« = Information is sufficient to solve the inverse problem without ambiguity

 In an analysis: enlarge the bin size to achieve this if the granularity of the information
to be unfolded is not that important

Note: too small binning is also meaningless considering the width of bin-to-bin smearing
in the response (smearing) matrix [Nyquist theorem]
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Simple traditional regularization

XZ — (M — R - S)T : (M — R - S) -+ ’[Z (Ck : S)l-Z%Regularization function
i

$ \

Likelihood function Regularization strength

The unfolded result
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Generalized regularization formalism

Generalization of regularization
formulism is discussed in

S = AC . (RTR)_l . RT -M Wiener-SVD unfolding paper.

—1
Ac=(RTR+7 ) "< (RTR) Simple regularization for illustration

§=A;-(RTR)™*-RT -M=A4,-(RTR)™*-RT - (R - 54yyye + N)
= Ac * Strye + Ac - (R"TR)™*-R"-N
= smeared truth (small bias) + suppressed noise (decent variance)

v' Additional smearing matrix A is fixed once a regularization method is chosen (the choice of
derivative matrix C, is arbitrary, C, is more common).
v A, contains all information we need to calculate the bias introduced in the regularization.

v A different model will have a different bias (A — I) * Smoder
V' A¢ * Smoder IS to be compared to the unfolded result § (= A¢ * Sgpye + Suppressed noise)

v" Uncertainty of § can be directly calculated through standard propagation following the formula.
A is part of the linear transformation.



SVD regularization

* Singular Value Decomposition (SVD) of response matrix

R=UDVT
Rotation — U: mXm orthogonal matrix
Geometrical Scaling > D: mXn diagonal matrix with non-negative real numbers
Transformations on the diagonal; elements d;; is in descending order

Rotation — V:nXn orthogonal matrix
Columns of U, V are orthonormal bases

Filter factor
: T
* — SVD with truncation SVD is a way to transfer the measurement
8! =), = fiEgUianZation Wit domain to an “effective frequency” domain,
ISR SHEg therefore enabling the suppression of high
“frequent” noise which in general
Kernel corresponds to small d;; (singular values).
0 5 10 . ij — d; e ij
V. Blobe, PHYSTAT2011, presentation ' T Regularization strength
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SVD regularization

* Singular Value Decomposition (SVD) of response matrix

R=UDVT
Rotation — U: mXm orthogonal matrix
Geometrical Scaling > D: mXn diagonal matrix with non-negative real numbers
Transformations on the diagonal; elements d;; is in descending order

Rotation — V:nXn orthogonal matrix
Columns of U, V are orthonormal bases

A _ 1. . n=1. 7T . SVD is a way to transfer the measurement

s=V-F-D u--M domain to an “effective frequency” domain,

= AC . (RTR)_l . RT ‘M Eherefore”ena.bllng the guppressmn of high
frequent” noise which in general

Ac =V -F- yr Kernel corresponds to small d;; (singular values).
F;: = diz )
Yood?+ 1Y

T Regularization strength
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WI e n e r'SV D U nfO I d I n g A choice of additional smearing matrix A,

§=A--(RTR)™*-R" M a.=c;*v -w -vl.c,
(SVD decomposition) RC~1=U -D -VT
d? - (VT - Cy, - S_)iz
dz- (VT C.-5)" +1

(Wiener-SVD kernel) Wl-j = 5ij

« A is fixed once the expectation of signal s is chosen. No strength parameter to tune with.

» Unfolding is model dependent (any method is not?)
* choose the “best” prediction of s, Or a weighted average from various models

* Ensure the prediction from the best knowledge of s and the real measurement are well consistent
within full uncertainties

» (optional) Additional mock data study with varied models to further validate the choice of s

 What we care most:

* Measurement uncertainties (model independent or largely independent) properly propagate to the
unfolded results --> straightforward based on the unfolded result formula (math)

* What is the model-dependent bias in this unfolding? Can be calculated using A.



Wiener-SVD Unfolding

* To automatically minimize the Mean Square Error (MSE) given a
model §

Regularization w/ C
Regularization w/ C
Regularization w/ C
® Wiener-SVD w/ C

Wiener-SVD w/ C,
® Wiener-SVD w/C,

10*

variance

MSE=E[(§—S)2]=E[(F-%—S)2]=E[(F-S+F-%—S)2]

2
—E((F—I)-S)2+(F-ﬂ>] L : :
- R F = additional smearing matrix =
f ’\ regularization
Bias Variance
7% ol — 'iégm;@;a{g;n wie,
g RZEEiZﬁZEﬁE%; ] o Traditional regularization needs to “tune”
L S I a regularization strength parameter
il WienerSYBwIG, [curve in the left plot]

o Wiener-SVD regularization corresponds
to a fixed point in the phase space of
bias versus variance with minimum MSE
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Uncertainty treatment Pre-scaling

= M:=0Q0 -m
' i ' = R=Q- r
§=A.-(RTR)"L-RT-M Best fit of regularized chi2 Q
§ — KtOt m

Standard error propagation COUS — Ktot . CO‘Dm . Kg;)t

from a linear transformation

Cov,, is the covariance of predicited m considering deviation from the central value.
Predictedm =17 -s + bkg

 sisrelated to the “true parameter” to be unfolded and it has NO uncertainty (fixed at central value)
* Subtext: assume/ensure sy is consistent with s, or at least they agree within uncertainties
* 71:response matrix derived from central value prediction and its variation is computed and reflected
in the variation of m
* bkg: central value prediction of background spectrum and its uncertainty is computed and reflected
in the variation of m
e Statistical uncertainty of m

12/2/21 H. Wei | CEWG meeting 13



A case of extracting cross section

Recent MicroBooNE cross section measurement https://arxiv.org/abs/2110.14023 (A future talk from Wengiang)

M(E'r'ec) = POT-T- F(Eu) * G(Eu) : D(Eua Erec) z E(Eua Erec) : dEu T B(Erec)a
A bt T T

Flux Cross Detector response Background
section  (smearing and efficiency)

Integrated beam
luminosity, target mass

§.A— POT'T'ij(EVj)'O'(E,,j)'D(E,,j,Erecz')'E(E,,j,Erec z)dEl,J
T POT T [, F (B, ;)0 (B ;) dBy
[;F(Ey ;) -o(E,;)-dE, ;

J;F(Ey 5)-dE, ;

MZZZSU‘*‘B“ B
j -(POT-T-/F(EUj)-dEVj)-
J

=A;-F;- 8,

Cross section term cannot be cleanly extracted given the finite
size of binning and energy-dependent flux
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https://arxiv.org/abs/2110.14023

A case of extracting cross section

(Selected no. of events in reco. energy bin i from true energy bin j after event weights)

Koo
= (Generated no. of events in true energy bin j after event weights)

j Response matrix

POTTIJF(EV j)'O'(EV J)D(El, jaErec z) 'E(EV j,Erec z)dEVJ
POT-T-[.F(E, ;) 0(E,;) dE,

>| J;F(Ey ;) -0 (B, ;) dE, ;
ij(EV j)-dE,

T
CV flux weighted cross section TO UNFOLD

POT-T-/F(EVj)-dE,,j
J

Wiener-SVD Constant including luminosity, target mass, and central value (CV) flux
Unfolding
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Uncertainty treatment § = Kyor -

— T

Response matrix  Flux (only numerator), cross section, and detector systematics

POTTLF(EV j) 'O'(E,, j) D(EV j,E'rec z) 'E(EV j)E'rec z) 'dE,,j

POT-T-/F(EVj)-dE,,j
J

[;F(E, ;) -0(Ey;)-dE, ;
] fif(Ev j)'dEVj

T

CV flux weighted cross section (TO UNFOLD) No flux nor cross

section uncertainty to be considered

Constant including luminosity, target mass, and central value (CV) flux

Uncertainty of beam
intensity and target mass
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What to report

* Unfolded spectrum §
e Covariance matrix of S

« Additional smearing matrix A, }

. Central value (nominal) flux F The things are to be applied to any

other models for comparisons

12/2/21 H. Wei | CEWG meeting 17



Summary

* Wiener-SVD unfolding

» Generalized formulism, additional smearing matrix Ac
* Minimal MSE

* No regularization parameter

» Uncertainty standard propagration

« Cross section uncertainty
» Flux uncertainty treatment (nominal flux weighted cross section)



Backup slides
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Effective frequency domain

§=V-F-D71.UT-M

v “Time” = “Energy”, response matrix is not energy-invariant & unclear
physics of Fourier transform on the response matrix
v’ Fourier transform doesn’t work

T
vTs), = F (U M)i Three numbers + filter
( S)i — Ui’ D.. given the i-th row
Li

v' “i” corresponds to “frequency”

v’ Referto My = UT - M as the measurement in ‘effective frequency
domain’ and Ry = UT - R, Ny = UT - N (still independent normal
distribution),

v UT is a rotation (transformation). A ‘scaling’ D connects My and Sy, so
they can be treated as in the same domain.
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Effective frequency domain

My, =UT-M

* Consider M measured in the “energy” domain
e Bases: (1,0,0, ...),(0, 1,0, ...), etc

» UT transform (rotate) M into the “effective frequency” domain

* The bases in “effective frequency” domain are the
columns(rows) of orthogonal matrix U(UT) if represented
by “energy” (hint: representation theory in matrix mechanics)

* The higher “frequency” corresponds to smaller singular value
(wild oscillation in the direct inverse solution).



Effective frequency domain

* SVD decomposition (R = UDVT) of a realistic response matrix (Daya Bay
experiment, neutrino spectrum to measured spectrum)

Singular values (d;) in descending order The rest: first 11 columns of matrix U

& & & &
I
—
I
(=)

i (index of singular value and i-th column of U)
[Eee 0n | o i O 1007 | -

X-axis: energy index, corresponds to M, measured in energy domain
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