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https://inspirehep.net/literature/1598758

Rising citations in the past year in the fields of neutrino cross section measurement, 
reactor neutrino flux unfolding, and collider physics.



Data unfolding
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• Solve an inverse problem (from result to cause)
• Unfolding, deconvolution, unsmearing, etc. 
• Discretized in general given the measurement in binned distribution (e.g. histograms)

• In HEP community, to estimate the true signal based on a measurement with 
• Detector response
• Statistical fluctuation
• Systematic (backgrounds, mis-modeling of detector response, imperfect calibration, etc.)

• Necessity
• Close to the true signal without specific detector response
• Comparison with theoretical predictions, e.g. cross section
• Comparison between different experiments
• Sometimes certain features may not be recognizable (intuitive) in the folded distribution

• Not necessary in many problems, e.g. hypothesis testing or parameter fit



• In general, the number of dimensions/bins in a measurement is more than that in true 
spectrum to be unfolded. The data unfolding problem is essentially a fitting problem. 
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𝜒! 𝑠 = 𝒎− 𝒓 ⋅ 𝑠 "𝐶𝑜𝑣#$(𝒎 − 𝒓 ⋅ 𝑠)
§ 𝒎 : measured spectrum, m-dimensional vector; central value background 

subtracted and its uncertainty propagated to total covariance
§ 𝒔 : unknown spectrum, to be unfolded, n-dimensional vector
§ 𝒓 : smearing (response) matrix, m X n and m ≥ n
§ Cov : total covariance matrix containing all statistical and systematic uncertainties

• Cholesky decomposition: 𝐶𝑜𝑣#$ = 𝑄"𝑄, 𝑄 is a lower triangular matrix

𝜒! 𝑠 = 𝑀 − 𝑅 ⋅ 𝑠 " ⋅ (𝑀 − 𝑅 ⋅ 𝑠)
Pre-scaling
§ 𝑀 ≔ 𝑄 ⋅ 𝒎
§ 𝑅 ≔ 𝑄 ⋅ 𝒓

Solution (direct inversion)
�̂� = 𝑅!𝑅 "#𝑅!𝑀

𝑀 = 𝑅 ⋅ 𝑠$%&' + 𝑁(𝑛𝑜𝑖𝑠𝑒)
𝑁𝑜𝑖𝑠𝑒 ≔ 𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑎𝑡. +𝑡𝑜𝑡𝑎𝑙 𝑠𝑦𝑠.

The response matrix 𝑅 is 
unnecessary to be a square 
matrix
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𝑆 +𝑀 = 𝑅 ⋅ 𝑆

𝑀 = 𝑅 ⋅ 𝑆 + 𝑁 𝑆 + 𝑅!" ⋅ 𝑁
Practical solution: trade-off between bias and variance
to suppress the “oscillation” --> regularization [defines 
various unfolding methods]

This is one unbiased solution (direct inversion, no 
regularization) to an unfolding problem. “True” 
information is buried in the catastrophic oscillations 
in the unfolded spectrum.
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Data unfolding
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• Regularization is not needed if
• Bin-to-bin smearing is small
• = Response matrix is well-conditioned 
• = Information is sufficient to solve the inverse problem without ambiguity
• In an analysis: enlarge the bin size to achieve this if the granularity of the information 

to be unfolded is not that important

Note: too small binning is also meaningless considering the width of bin-to-bin smearing 
in the response (smearing) matrix [Nyquist theorem]
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Regularization



Simple traditional regularization
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𝜒4 = 𝑀 − 𝑅 ⋅ 𝑠 5 ⋅ 𝑀 − 𝑅 ⋅ 𝑠 + 𝜏*
6
𝐶7 ⋅ 𝑠 6

4

Likelihood function Regularization strength

Regularization function

The unfolded result

�̂� = 𝑅"𝑅 + 𝜏𝐶1"𝐶1
#$ ⋅ 𝑅" ⋅ 𝑀

𝐶( is k-th order derivative matrix, e.g. k=0, identity matrix
Need to plug in 𝐶( in the formula where 𝑅 = 𝑅 ⋅ 𝐶("#



Generalized regularization formalism
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�̂� = 𝐴2 ⋅ 𝑅"𝑅 #$ ⋅ 𝑅" ⋅ 𝑀

Generalization of regularization 
formulism is discussed in
Wiener-SVD unfolding paper.

�̂� = 𝐴2 ⋅ 𝑅"𝑅 #$ ⋅ 𝑅" ⋅ 𝑀 = 𝐴2 ⋅ 𝑅"𝑅 #$⋅ 𝑅" ⋅ 𝑅 ⋅ 𝑠3456 +𝑁
= 𝐴2 ⋅ 𝑠3456 + 𝐴2 ⋅ 𝑅"𝑅 #$ ⋅ 𝑅" ⋅ 𝑁

= smeared truth (small bias) + suppressed noise (decent variance)

ü Additional smearing matrix 𝐴# is fixed once a regularization method is chosen (the choice of 
derivative matrix 𝐶$ is arbitrary, 𝐶% is more common).

ü 𝐴# contains all information we need to calculate the bias introduced in the regularization. 
ü A different model will have a different bias 𝐴# − 𝐼 ⋅ 𝑠&'()*
ü 𝐴# ⋅ 𝑠&'()* is to be compared to the unfolded result �̂� (= 𝐴# ⋅ 𝑠+,-) + 𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑛𝑜𝑖𝑠𝑒)

ü Uncertainty of �̂� can be directly calculated through standard propagation following the formula. 
𝐴# is part of the linear transformation. 

Simple regularization for illustration𝐴# = 𝑅.𝑅 + 𝜏𝐶$.𝐶$
!" ⋅ (𝑅.𝑅)



SVD regularization
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• Singular Value Decomposition (SVD) of response matrix
𝑅 = 𝑈𝐷𝑉5
U: 𝑚×𝑚 orthogonal matrix
D: 𝑚×𝑛 diagonal matrix with non-negative real numbers
on the diagonal; elements 𝑑)) is in descending order
V: 𝑛×𝑛 orthogonal matrix

Geometrical
Transformations

Rotation

Rotation

Scaling

Columns of U, V are orthonormal bases

SVD is a way to transfer the measurement 
domain to an “effective frequency” domain, 
therefore enabling the suppression of high 
“frequent” noise which in general 
corresponds to small 𝑑// (singular values).

V. Blobe, PHYSTAT2011, presentation

Kernel

𝐹)* =
𝑑)+

𝑑)+ + 𝜏
𝛿)*

Regularization strength



SVD regularization
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• Singular Value Decomposition (SVD) of response matrix
𝑅 = 𝑈𝐷𝑉5
U: 𝑚×𝑚 orthogonal matrix
D: 𝑚×𝑛 diagonal matrix with non-negative real numbers
on the diagonal; elements 𝑑)) is in descending order
V: 𝑛×𝑛 orthogonal matrix

Geometrical
Transformations

Rotation

Rotation

Scaling

Columns of U, V are orthonormal bases

SVD is a way to transfer the measurement 
domain to an “effective frequency” domain, 
therefore enabling the suppression of high 
“frequent” noise which in general 
corresponds to small 𝑑// (singular values).Kernel

𝐹)* =
𝑑)+

𝑑)+ + 𝜏
𝛿)*

Regularization strength

�̂� = 𝑉 ⋅ 𝐹 ⋅ 𝐷#$ ⋅ 𝑈" ⋅ 𝑀

�̂� = 𝐴2 ⋅ 𝑅"𝑅 #$ ⋅ 𝑅" ⋅ 𝑀
𝐴2 = 𝑉 ⋅ 𝐹 ⋅ 𝑉"



Wiener-SVD Unfolding

• 𝐴, is fixed once the expectation of signal �̅� is chosen. No strength parameter to tune with.
• Unfolding is model dependent (any method is not?)

• choose the “best” prediction of 𝑠!"#$ or a weighted average from various models
• Ensure the prediction from the best knowledge of 𝑠 and the real measurement are well consistent 

within full uncertainties
• (optional) Additional mock data study with varied models to further validate the choice of 𝑠

• What we care most:
• Measurement uncertainties (model independent or largely independent) properly propagate to the

unfolded results --> straightforward based on the unfolded result formula (math)
• What is the model-dependent bias in this unfolding? Can be calculated using 𝐴%.

�̂� = 𝐴2 ⋅ 𝑅"𝑅 #$ ⋅ 𝑅" ⋅ 𝑀 𝐴, = 𝐶("# ⋅ 𝑉 ⋅ 𝑊 ⋅ 𝑉! ⋅ 𝐶(

𝑅𝐶"# = 𝑈 ⋅ 𝐷 ⋅ 𝑉!

𝑊)* =
𝑑)+ ⋅ 𝑉

! ⋅ 𝐶( ⋅ �̅� )
+

𝑑)+ ⋅ 𝑉
! ⋅ 𝐶( ⋅ �̅� )

+ + 1
𝛿)*

(SVD decomposition)

(Wiener-SVD kernel)
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A choice of additional smearing matrix 𝐴#
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• To automatically minimize the Mean Square Error (MSE) given a
model 𝑆

𝑀𝑆𝐸 = 𝐸 H𝑆 − 𝑆 + = 𝐸 𝐹 ⋅
𝑀
𝑅
− 𝑆

+
= 𝐸 𝐹 ⋅ 𝑆 + 𝐹 ⋅

𝑁
𝑅
− 𝑆

+

= 𝐸 ( 𝑭 − 𝑰) ⋅ 𝑺 ++ 𝑭 ⋅
𝑵
𝑹

+

Bias Variance

𝐹 = additional smearing matrix =
regularization

o Traditional regularization needs to “tune”
a regularization strength parameter
[curve in the left plot]

o Wiener-SVD regularization corresponds
to a fixed point in the phase space of
bias versus variance with minimum MSE
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Wiener-SVD Unfolding
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Uncertainty treatment
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�̂� = 𝐴2 ⋅ 𝑅"𝑅 #$ ⋅ 𝑅" ⋅ 𝑀

Predicted𝑚 = 𝑟 ⋅ 𝑠 + 𝑏𝑘𝑔

• 𝒔 is related to the “true parameter” to be unfolded and it has NO uncertainty (fixed at central value)
• Subtext: assume/ensure 𝒔𝑪𝑽 is consistent with 𝒔𝒕𝒓𝒖𝒆 or at least they agree within uncertainties

• 𝑟: response matrix derived from central value prediction and its variation is computed and reflected 
in the variation of 𝑚

• 𝒃𝒌𝒈: central value prediction of background spectrum and its uncertainty  is computed and reflected 
in the variation of 𝑚

• Statistical uncertainty of 𝑚

𝐶𝑜𝑣I = 𝐾3J3 ⋅ 𝑪𝒐𝒗𝒎 ⋅ 𝐾3J3"
�̂� = 𝐾3J3 ⋅ 𝑚

Standard error propagation 
from a linear transformation

Pre-scaling
§ 𝑀 ≔ 𝑄 ⋅ 𝒎
§ 𝑅 ≔ 𝑄 ⋅ 𝒓

𝐶𝑜𝑣3 is the covariance of predicited 𝑚 considering deviation from the central value.

Best fit of regularized chi2 
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A case of extracting cross section

Integrated beam 
luminosity, target mass 

Flux Cross 
section

Detector response 
(smearing and efficiency)

Background

Cross section term cannot be cleanly extracted given the finite 
size of binning and energy-dependent flux 

Recent MicroBooNE cross section measurement https://arxiv.org/abs/2110.14023 (A future talk from Wenqiang)

https://arxiv.org/abs/2110.14023
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Constant including luminosity, target mass, and central value (CV) flux

CV flux weighted cross section TO UNFOLD

Response matrix

A case of extracting cross section

Wiener-SVD 
Unfolding
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Uncertainty treatment

Constant including luminosity, target mass, and central value (CV) flux

CV flux weighted cross section

Response matrix Flux (only  numerator), cross section, and detector systematics

Uncertainty of beam 
intensity and target mass

(TO UNFOLD) No flux nor cross 
section uncertainty to be considered

𝐶𝑜𝑣I = 𝐾3J3 ⋅ 𝑪𝒐𝒗𝒎 ⋅ 𝐾3J3"
�̂� = 𝐾3J3 ⋅ 𝑚



What to report
• Unfolded spectrum �̂�
• Covariance matrix of �̂�

• Additional smearing matrix 𝐴2
• Central value (nominal) flux >𝐹
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The things are to be applied to any 
other models for comparisons 



Summary

• Wiener-SVD unfolding
• Generalized formulism, additional smearing matrix Ac
• Minimal MSE 
• No regularization parameter
• Uncertainty standard propagration

• Cross section uncertainty
• Flux uncertainty treatment (nominal flux weighted cross section)
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Backup slides
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Effective frequency domain
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�̂� = 𝑉 ⋅ 𝐹 ⋅ 𝐷!" ⋅ 𝑈# ⋅ 𝑀

ü “i” corresponds to “frequency”
ü Refer to 𝑀4 = 𝑈! ⋅ 𝑀 as the measurement in ‘effective frequency

domain’ and 𝑅4 = 𝑈! ⋅ 𝑅, 𝑁4 = 𝑈! ⋅ 𝑁 (still independent normal
distribution),

ü 𝑈! is a rotation (transformation). A ‘scaling’ 𝐷 connects 𝑀4 and 𝑆5, so
they can be treated as in the same domain.

𝑉"�̂� K = 𝐹KK ⋅
𝑈"𝑀 K
𝐷KK

Three numbers + filter
given the i-th row

ü “Time” à “Energy”, response matrix is not energy-invariant & unclear
physics of Fourier transform on the response matrix

ü Fourier transform doesn’t work



Effective frequency domain

• Consider 𝑀 measured in the “energy” domain
• Bases: (1, 0, 0, …), (0, 1, 0, …), etc

• 𝑈# transform (rotate) 𝑀 into the “effective frequency” domain
• The bases in “effective frequency” domain are the
columns(rows) of orthogonal matrix 𝑼(𝑼𝑻) if represented
by “energy” (hint: representation theory in matrix mechanics)
• The higher “frequency” corresponds to smaller singular value

(wild oscillation in the direct inverse solution).
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𝑀\ = 𝑈5 ⋅ 𝑀



Effective frequency domain
• SVD decomposition (𝑅 = 𝑈𝐷𝑉!) of a realistic response matrix (Daya Bay

experiment, neutrino spectrum to measured spectrum)
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Singular values (𝒅𝒊) in descending order

i = 0

𝒊 (index of singular value and 𝒊-th column of 𝑈)

i = 1 i = 2

i = 3 i = 4 i = 5 i = 6

i = 7 i = 8 i = 9 i = 10

The rest: first 11 columns of matrix 𝑈

X-axis: energy index, corresponds to M, measured in energy domain


