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Post-hoc regularisation

Smearing data for more accurate plots
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* New perspective: Regularisation as matrix multiplication
* Can construct matrix A equivalent to Tikhonov reg.
Xz = —2 ln(Lstat(H)) — 21In (Lprior(g))
~ (0 —8) V-1(6 - ) + const.
2% = =210(Lstqc(8)) = 210 (Lprior (8) ) + Preg (6)
~ (6 — é)TV_l(H —0) +07Q 6 + const.
= (6-8) v'-1(9 — @) + const.
c0' =40
cA=W1t+0Q) v
V' = AV AT
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Computing efficiency %) OXFORD

e Can introduce arbitrary regularisation after single fit
* Potentially saving lots of time
* Especially when done in XSEC space, rather than fit param.

* L.-curve scan: Q - 1Q
* Ran on my laptop in < 15s
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Works with any published result ) OXFORD

* No need to know details of extraction method
e Just MLE and covariance
 Example: T2K dpT measurement
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* New ways of thinking about regularisation

* Equivalent to multiplying matrix A
e Coordinate transformation - change of variable meaning
e “Additional smearing” of result - same variable meaning

e Can apply regularisation after unregularized fit
* Assumes likelihood is well described by covariance matrix
* No re-fitting needed, just linear algebra

* Works on XSEC results directly, even after publication
* Hence “post-hoc regularisation”
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* Regularised result + A contain full information
* Can be interpreted as transformation into other coord. syst.

* Almost any A possible, but variable meanings change
* E.g. A that switches bins, mirrors values, etc.

* Choice of Q and thus A is kind of arbitrary

* Kink in L-curve method subjective

* More objective choice of A possible?

e Understand L-curve

0087

* Minimise “jaggedness”
(Penalty term in likelihood)

 Minimise shift of central value .
(squared Mahalanobis distance)
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e Result is not just central value!
» Should take cov of regularised result into account

e How to measure difference between distributions rather
than points?

e Earth mover’s distance

* Minimal total distance one has to
shift probabilities to get from one

—
distribution to the other /\/\~\ /\
X Y

e \Wasserstein metric

* Neat formula for comparing multivariate normal clzlistributions

1 1\2
w2 =9, — é}|2 +Tr (V1 +V, =2 (VZZVlVZZ) )
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* Uses Euclidean distance in parameter space

* E.g. how many cm”2/GeV you move the probability function
* Not very informative, especially with abstract parameters
* Transform into standard normal space of un-regularised result

e W2=(0—0) V(G —0")+N+Tr (UV’UT - Z(UV’UT)%)

v-1=u0Ty
* For identical cov, value ooy M distance
is same as M-distance! .| |2 g Hastanee
| \T= 3.2
. . . | =42
* Metric in units of g o] | wss
“z-score”, ool \ ool
“standard deviations”, oo N
‘oL . ” 1=316_
Chl'Square 0.02 - e 562
— =750 11000
I}.II'.] I}.I5 1 Il'.] 1 I5 EII'.] EIS
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 Jaggedness not actually the problem
e Data points fluctuate around true value, so what?

* Really want to make plots less misleading

e Plots do not contain information about bin correlations
e Chi-by-eye does not work

* Want to reduce difference between shown, implied
uncorrelated distribution and actual correlated result

e Can measure difference 7 |T=”
with W-metric! I
. lT=1.13
e Just set all off diagonalsof & | |--1s
. = 54 \r=24
regularised result to 0 8 | -3z
E; 4 II"-T=4.2
T=5.E
3 T=175
=100 P L
. =52 18 o3z 31 p=d2 25— 02 '
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« .. . T A unreg
* Minimise plot-bias: 0s | B e
. . Were
Wasserstein-Tikhonov- T dosest
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* Can probably ignore reg-bias!

* Reg-bias shows difference between unreg. result and reg.
result including covariance

* Only meaningful if people use reg. cov. for model comparisons

e But in that case could use unreg. result + cov. as well
* Or equivalently reg. result + cov. + A matrix
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* Redefine aim of regularisation:

* Not a statistical tool, but a data visualisation tool
* Or maybe a bit of both
» Uses prior assumptions to select subset of compatible results

* Make plots less misleading

* Reduce difference between implied uncorrelated distribution
and actual, correlated, unregularised distribution

e Use W-metric as measure of that difference
* “Objective” optimisation target



e UNIVERSITY OF

What to show in plots?

* Should use A to calculate chi2, but what about plots?
* Show original models with regularised data?
* Show models folded through A?

* Let’s investigate 2D (= 2 bin) case

e Regularisation
pulls towards x=y

* |In this case,
no big difference
of conclusions
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Now anticorrelated ) OXFORD

3

* Conclusions can be very different!
* Seems to occur when model is less “regular” than data
* Model gets shifted by A more than data itself
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Add local gradient? ) OXFORD

e Can add information about shape of likelihood surface
* At least locally around the model

* Better conclusions when looking at plots of correlated
data?
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Add local gradient? ) OXFORD

e Can add information about shape of likelihood surface
* At least locally around the model

* Better conclusions when looking at plots of correlated
data?

* Should always use gradient of unreg. chi2!
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* When plotting models, probably best to always plot
original ones
* “regularised” ones can become very strongly distorted

* Regularisation designed to best describe original result in plot!
* More visualisation tool than statistics tool

* Should still use A matrix to calculate correct chi2
* And add the number to the plot!

* Local Likelihood gradient around models could add
additional information

* Calculate with unregularized data!

* Or equivalently regularised data and A
grad || ATV "1 (6" — A46)

* Can show together with either regularised or unreg. data
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* Can achieve Tikhonov regularisation for any result after
the unregularized fit/unfolding
* No knowledge about unfolding procedure required
e Fast linear algebra

* Regularisation should probably be seen as data
visualisation tool
* Define aim to make least misleading plots

* Use Wasserstein distance to quantify difference between
shown, implicitly uncorrelated distribution and unregularized
result

* Plots should always show original models

* Adding local gradient information can help interpreting
differences between data and model



Backups
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* New MicroBooNE pre-print XSEC measurements use
“Wiener-SVD-unfolding”

* Method described in paper “Data Unfolding with
Wiener-SVD Method” by W. Tang et al.
https://doi.org/10.1088/1748-0221/12/10/P10002

* Unfolding by matrix inversion
* Or rather pseudo inverse, applicable to non-square matrices
* Leads to the usual sensitivity to stat. fluctuations and corr.

* Regularisation by applying an “additional smearing
matrix”, A, to the result

 Reduces anticorrelations

* Regularised result + A = same information as unreg.
* Coordinate transformation: truth space - pretty plot space



https://doi.org/10.1088/1748-0221/12/10/P10002
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* Tikhonov matrixC: Q = C'C

*C1
P = (= %141’

P = Z(xl — 2Xp41 + Xi12)°
l

* C2

* “template scaling” on XSEC result
X; — Xi/mi
* m becomes part of Q
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* Minimise plot-bias directly?
* Does not move central values
* Only scales errors
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