
More Generators
Pat Riehecky
Programming Video Journal Club - Session 9
17 March 2021

Generators are a fundamental (foundational?) part of the python language. When
used cleanly “Generators Will Free Your Mind” (PyData 2014)

Generators help you think about your DATA, not your code base!

Why talk about this?

03/02/2021 Riehecky | PVJC Session 92

https://www.youtube.com/watch?v=RdhoN4VVqq8

More About Generators - James Powell PyData 2018

https://www.youtube.com/watch?v=m6asOJmfGpY

James Powell has a lot of good talks about generators. This one teases at some of
the most interesting bits without skipping over the fundamentals.

He asks a central question, “Why don’t generators show up more in data science?”

Why this talk?

03/02/2021 Riehecky | PVJC Session 93

https://www.youtube.com/watch?v=m6asOJmfGpY

More About Generators - James Powell PyData 2018

https://www.youtube.com/watch?v=m6asOJmfGpY

James Powell has a lot of good talks about generators. This one teases at some of
the most interesting bits without skipping over the fundamentals.

He asks a central question, “Why don’t generators show up more in data science?”

Why this talk?

03/02/2021 Riehecky | PVJC Session 94

https://www.youtube.com/watch?v=m6asOJmfGpY

1) Review

2) What Generators Are

3) Why they are not what you think they are

4) “fun”

Talk Outline

03/02/2021 Riehecky | PVJC Session 95

From a user perspective, what is the difference between an Anonymous Function and
a Named Function? There really isn’t one.

What about between an Object and a Named Function? While an Object makes some
things easier, there still isn’t a clear difference to the end user.

In the end Objects and Closures are identical.

For folks like me who forgot, a Closure basically a function that contains “variables”
that are used by a function within the function. James’ code is probably clearer than
this sentence

Review - Computing Principles

03/02/2021 Riehecky | PVJC Session 96

If a trivial compute function can become an object, it can become a generator:

The generator object uses no storage, and can be modified with something like
__call__(self, size) to permit user flexibility. Lazy fetch saves time/memory.

Review - The dumb compute function

03/02/2021 Riehecky | PVJC Session 97

def compute():
 sleep(0.1)
 return randrange(10)

def f():
 rv = []
 for _ in range(10)
 rv.append(compute())
 return rv

class F:
 def __iter__(self):
 self.size = 10
 return self
 def __next__(self):
 if not self.size:
 raise StopIteration
 self.size -= 1
 return compute()
f = F()

def f():
 for _ in range(10):
 yield compute()

Generators are Lazy - Only get a value when you ask for a value.

Itertools - Functions creating iterators for efficient looping - even over unknown
(infinite) sizes

A Generator is a sequencing mechanism. A Generator can quietly model an
application API within itself.

James quickly touches on what it takes to make Generators use Python’s async
framework. If you don’t write the async bits, Generators are not async.

What Are Generators

03/02/2021 Riehecky | PVJC Session 98

Python numbers, lists, and generators are not a good tool for computational analysis.

Numpy, super fast. Python no so much...

Generators are not “multi processing” (unless you write the multi processing in there)

Generators don’t have attributes (functions do)

Each element needs to be generated to be returned in sequence.

What Generators Are Not

03/02/2021 Riehecky | PVJC Session 99

Generators can help you construct your program around your data.

James had some issues here, so the code is “a bit sparse”… The example he
mentioned is in “Generators Will Free Your Mind” (PyData 2014)

The goal of the example code is clear - a chain of connected values can store their
state (from an expensive calculation) and provide it to others or if it needs to be
recalculated it can call “expensive operation” only as needed.

The most obvious non-generator version of this code would be written mostly around
the “message passing” rather than the data blobs. Generators let you skip over
writing the synchronization code by becoming a synchronization interface.

Fun With Generators

03/02/2021 Riehecky | PVJC Session 910

https://www.youtube.com/watch?v=RdhoN4VVqq8

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

