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Introduction
● This is an attempt to explain:

– How we make neutrino cross section measurements
– What we’re limited by
– What measurements exist
– What the future holds

● I may have included too much stuff...
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Outline
● Liquid argon detectors

● Neutrino beams and uncertainties

● Past & Recent measurements

● Prospects for DUNE
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Fundamental Principle

Box of argon liquid
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Fundamental Principle

Box of argon liquid Electric 
field
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Fundamental Principle

invisible neutrino
Charged particles
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Fundamental Principle

Charge signals along 
particle tracks
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Fundamental Principle

Electric field pulls the free 
electrons
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Fundamental Principle
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Fundamental Principle

These electrons

Arrive later

Than these
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Advantages of LArTPCs
● Highly granular 

fully active 
calorimeters

● Energy thresholds 
of ~20 MeV

● Scalable (just drift 
further)

75 cm
Run 3493 Event 41075, October 23rd, 2015 
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Limitations
● Slow readout:

– No real time information: neutron TOF not possible
– Surface detectors struggle from cosmics
– High intensity (DUNE) struggle with pileup

● No magnetic field:
– Momentum only available from range

● Challenging when hadronic re-interactions occur

– No sign identification
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Energy Thresholds
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Energy Thresholds

3mm 
separation
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Energy Thresholds
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Hadronic Interactions
● No magnet – options for hadronic 

energy are:
– Calorimetry
– Track lengths

● Energy resolution different for pions 
and protons that shower

● Particle ID requires stopping 
particles

● Limits measurable energy range
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How to make a neutrino beam

NuMI as an 
example

Neutrino “beams” are really neutrino showers

Wide spread in direction, wide spread in momentum
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Neutrino Fluxes
● DUNE very similar 

to MINERvA
● All have a large 

spread of neutrino 
energies

● DUNE will be 
particularly wide 
(intentionally)

SBN
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Flux uncertainties
● Normalisation

– Uncertain pion production in the target

● Focusing
– Focusing components alignment/currents
– Generally small

● High-energy tail
– Uncertain kaon production in the target
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Example: T2K
● Focusing dominant on 

the high edge of the 
peak

● Everywhere else hadron 
production dominant

● Mainly a normalisation 
uncertainty
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Neutrino-electron scattering
● Process with a perfectly known 

cross section
● Next-to-no shape information
● MINERvA reached ~4% 

uncertainty with this
● DUNE might get down to 1-2% 

or so
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Neutrino Energy Measurement
● Event-by-event no knowledge of the neutrino 

energy
– Neutrino energy can be “reconstructed”
– But always requires some nuclear corrections
– Leads to large uncertainties in oscillation 

measurements

● “Modern” idea to constrain models:
– Measure kinematics “integrated” over neutrino flux
– Compare to an equivalent prediction
– Rinse, repeat, use multiple experiments etc

Reco E
v
 – True E

v



 
Andrew Furmanski 34

Outline
● Liquid argon detectors

● Neutrino beams and uncertainties
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ArgoNeuT

MINOS
ND

ArgoNeuT

~200 kg Lar detector
MINOS ND used to measure muon energy
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Zero-pion measurements

Primarily muon 
kinematics and proton 
multiplicity measured
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Pion measurements
● No ability to 

measure charged 
pion energy

● Not particularly 
good agreement 
with predictions 
from 
generators...
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Low Energy Stuff
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Low Energy Stuff
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Low Energy Stuff
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MicroBooNE

For a sense of scale

● 500 times the size of ArgoNeuT
● Lower neutrino beam energy
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Inclusive measurements
● Simultaneous muon momentum/angle measurement
● Generators unable to describe all bins
● Forward region most sensitive – “RPA” and MEC both impact interpretation
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Zero-pion measurements
Only showing a snapshot, but the point is:

- Data suffer from large uncertainties (will improve)
- No generator does best in all variables
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Pion measurements
● Neutral pion total cross 

section
● Working on differential 

measurements in pion 
kinematics

● Also working on charged-
pion measurements (hard)
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MicroBooNE Data Interpreting
Shamelessly stolen from K. Duffy
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MicroBooNE Data Interpreting
Shamelessly stolen from K. Duffy

Many effects at play here, although looking at the 
same variable with different sub-sets of events 
can help to reveal what might be going on



 
Andrew Furmanski 47

Outline
● Liquid argon detectors

● Neutrino beams and uncertainties

● Past & Recent measurements

● Prospects for DUNE



 
Andrew Furmanski 48

DUNE Near Detector 
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DUNE Near Detector
Already out of date!

ArgonCube:
Liquid argon 
(LAr)

Multi-Purpose 
Detector (MPD):
Gaseous argon (GAr)

3D scintillator tracker 
(SAND): Hydrocarbon

LAr+GAr move off-
axis: PRISM

Neutrinos coming 
from the right
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ND-LAr
● Very high event rate

– Detector segmented into many small TPCs
– Some dead space in between

● Many muons exit – caught by ND-Gar
● Flux normalisation uncertainties will be small (ν-e scattering)
● Large fraction of hadronic energy will shower

– Therefore poor energy resolution
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ND-GAr
● High-pressure gas
● Even lower thresholds than Lar
● Minimal showering
● Magnetic field (sign selection 

and good momentum 
measurements)

● But, lower event rate
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ND-Gar + ECAL?
● Image out of date...
● ECal around gas allows 

measurements of:
– Neutrons (+TOF for 

momentum)
– Neutral pions (via photons)

● Also, improved PID, 
background rejection, etc
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PRISM
● Moving detectors off-axis allows sampling of highly correlated but different energy 

spectra
● Combinations could make a quasi-monoenergetic beam
● But, it’s not quite as monoenergetic as an electron beam...
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Conclusion
● Neutrino measurements are very challenging

– Wide energy spectra make interpretation hard

● DUNE will make significant improvements
– But it’s still limited by the neutrino beam
– And won’t start taking data until 2026 at the earliest

● LDMX can step in and measure:
– Neutron production
– Pion production
– Energy/momentum transfer dependence


